
DIGITAL NOTES
OF

ROBOTICS AND AUTOMATION

(R22A0351)

B. TECH III YEAR – I SEM

(2025-2026)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

III Year B.Tech. CSE- I Sem L/T/P/C
3/-/-/3

OPEN ELECTIVE – III
(R22A0351) ROBOTICS AND

AUTOMATION
COURSE OBJECTIVES:

1) To study overview of Embedded Systems, Robots, Microprocessors &Microcontrollers.
2) To study in detail about Robotics and sensors.
3) To study about AVR RISC Microcontroller architecture in detail.
4) To study about ARM Processor in detail.
5) To study about Artificial Intelligence in Robotics.

UNIT -I
Introduction to Embedded System Design, Categories of ES, Overview of Embedded System
Architecture, Recent Trends in Embedded Systems, Hardware Architecture of Embedded
System, Real-time Embedded Systems, Robots and Robotics, Microprocessors and
Microcontrollers, Microcontroller or Embedded Controller

UNIT - II

Robotics: Classification of Robots, Links and Joint, Degree of freedom, Motors-DC motors,
Stepper Motors, Servo Motors; Power Transmission-Type of Gears, Robotic Sensors,
Applications of Robot, S/w used for Robot programming.

UNIT- III
The AVR RISC microcontroller architecture: Introduction, AVR family architecture, register file,

Pin diagram of AVR, memory organization, I/O ports, timers, USART, Interrupt structure.

UNIT-IV
ARM Processor: Fundamentals, Registers, current program status register, pipeline concept,
Interrupt and the vector table.

UNIT V

AI IN ROBOTICS: Robotic perception, localization, mapping- configuring space, planning
uncertain movements, dynamics and control of movement, Ethics and risks of artificial
intelligence in robotics.

TEXT BOOKS:

1) Subrata Ghoshal, "Embedded Systems & Robots", Cengage Learning
2) Stuart Russell, Peter Norvig, “Artificial Intelligence: A modern approch”, Pearson

Education,India2003.
3) ARM System Developer’s Guide: Designing and Optimizing System Software- Andrew

N.Sloss, Dominic Symes, Chris Wright, Elsevier Inc., 2007

REFERENCE BOOKS:
1) M.A. Mazidi, J.G. Mazidi, R.D. Mckinlay, "8051 Microcontroller and Embedded Systems",

Pearson.
2) Dr. K.V.K. Prasad, "Embedded/Real-Time Systems: Concepts Design &

Programming",Dreamtech.
3) Microcontrollers and applications, Ajay V Deshmukh , TMGH,2005

COURSE OUTCOMES:

At the end of the course, the students will be able to
1) Understand the overview of Embedded Systems, Robots, Microprocessors

&Microcontrollers.
2) Understand in detail about Robotics and sensors.
3) Understand AVR RISC Microcontroller architecture in detail.
4) Understand about ARM Processor in detail.
5) Understand about Artificial Intelligence in Robotics.

UNIT-1

Introduction to Embedded Systems Design:

• Embedded system is an Electronic/Electro mechanical system which is designed to
perform a specific function and is a combination of both hardware and firmware
(Software).

• E.g. Electronic Toys, Mobile Handsets, Washing Machines, Air Conditioners, Automotive
Control Units, Set Top Box, DVD Player etc…

• An embedded system can be a small independent system or a large combinational system.
It is a microcontroller-based control system used to perform a specific task of operation.

• An embedded system is a combination of three major components:

• Hardware: It comprises of microcontroller based integrated circuit, power supply, LCD
display etc.

• Application software: Application software allows the user to perform varieties of
applications to be run on an embedded system by changing the code installed in an
embedded system.

• Real Time Operating system (RTOS): RTOS supervises the way an embedded system work.
It acts as an interface between hardware and application software which supervises the
application software and provide mechanism to let the processor run on the basis of
scheduling.

An Embedded system is configured to perform a specific dedicated application.

Characteristics of an Embedded System: The important characteristics of an embedded system
are:

• Speed (bytes/sec): Should be high speed

• Power (watts): Low power dissipation

• Size and weight: As far as possible small in size and low weight

• Accuracy (% error): Must be very accurate

• Adaptability: High adaptability and accessibility.

• Distributed: embedded systems may be part of larger systems.

• Reliability(probability that the system works properly for a specific period of time): Must
be reliable over a long period of time

• So, an embedded system must perform the operations at a high speed so that it can be
readily used for real time applications and its power consumption must be very low and
the size of the system should be as for as possible small and the readings must be
accurate with minimum error. The system must be easily adaptable for different
situations.

Embedded Systems vs General Computing systems:

CATEGORIES OF EMBEDDED SYSTEMS:

Embedded systems can be classified into the following 4 categories based on their functional and
performance requirements.

Based on the Functional Requirements:

1) Stand alone Embedded systems: A stand-alone embedded system works by itself. It is a self-
contained device which does not require any host system like a computer. It takes either digital
or analog inputs from its input ports, calibrates, converts, and processes the data, and outputs
the resulting data to its attached output device, which either displays data, or controls and drives
the attached devices.

EX: Temperature measurement systems, digital cameras, and microwave ovens, washing
machines are the examples for this category

2) Real time embedded system: An embedded system which gives the required output in a
specified time or which strictly follows the time deadlines for completion of a task is known as a
Real time system. i.e. a Real Time system, in addition to functional correctness, also satisfies
the time constraints.

a) Hard real time E.S: A Real time system in which, the violation of time constraints will cause
critical failure and loss of life or property damage or catastrophe is known as a Hard Real
time system. The hardware and software of hard real-time systems must allow a worst case
execution (WCET) analysis that guarantees the execution be completed within a strict
deadline. The chip selection and RTOS selection become important factors for hard real-time
system design.

Ex: Deadline in a missile control embedded system , Delayed alarm during a Gas leakage ,
car airbag

control system , A delayed response in pacemakers ,Failure in RADAR functioning etc.

b) Soft Real time E.S: A Real time system in which, the violation of time constraints will cause
only the degraded quality, but the system can continue to operate is known as a Soft real time
system. In soft real-time systems, the design focus is to offer a guaranteed bandwidth to each
real-time task and to distribute the resources to the tasks.

Ex: A Microwave Oven, washing machine, TV remote etc.

3) Networked embedded systems: The networked embedded systems are related to a network.
The connected network can be a Local Area Network (LAN) or a Wide Area Network (WAN), or
the Internet. The connection can be either wired or wireless. The networked embedded system is
the fastest growing area in embedded systems applications. The embedded web server is suczh a
system where all embedded devices are connected to a web server and can be accessed and
controlled by any web browser. Ex: A home security system is an example of a LAN networked
embedded system where all sensors (e.g. motion detectors, light sensors, or smoke sensors) are
wired and running on the TCP/IP protocol.

3) Mobile embedded systems: The portable embedded devices like mobile and cellular phones,
digital cameras, MP3 players, PDA (Personal Digital Assistants) are the example for mobile
embedded systems. The basic limitation of these devices is the limitation of memory and other
resources.

Based on the Performance Requirements:

 Small scale embedded systems: Embedded systems which are simple in application needs
and where the performance requirements are not time critical fall under this category. An
embedded system supported by a single 8–16 bit Microcontroller with on-chip RAM and
ROM designed to perform simple tasks is a Small scale embedded system. A small scale
embedded system may or may not contain an operating system.

Eg: mp3 player, digital camera

 Medium scale embedded systems: Embedded systems which are slightly complex in
hardware and firmware requirements. An embedded system supported by 16–32 bit
Microcontroller /Microprocessor with external RAM and ROM or digital signal
processors that can perform more complex operations is a Medium scale embedded
system.

Eg: Routers used in networking

 Large scale embedded systems: An embedded system supported by 32-64 bit
processors/controllers or Reconfigurable system on chip (RSoC) or multicore processors
which can perform distributed jobs is considered as a Large scale embedded system.

Complex Embedded systems usually contain a high performance RTOS for task scheduling ,
prioritization and management.

Eg: Airline traffic control system

MAJOR APPLICATION AREAS:

Overview of embedded systems architecture:

 Every embedded system consists of customized hardware components supported by a
Central Processing Unit (CPU), which is the heart of a microprocessor (µP) or
microcontroller (µC).

 A microcontroller is an integrated chip which comes with built-in memory, I/O ports,
timers, and other components.

 Most embedded systems are built on microcontrollers, which run faster than a custom-
built system with a microprocessor, because all components are integrated within a single
chip.

 Operating system plays an important role in most of the embedded systems. But all the
embedded systems do not use the operating system.

 The systems with high end applications only use operating system. To use the operating
system the embedded system should have large memory capability. So, this is not possible
in low end applications like remote systems, digital cameras, MP3 players, robot toys etc.

 The architecture of an embedded system with OS can be denoted by layered structure as
shown below.

 The OS will provide an interface between the hardware and application software.

 In the case of embedded systems with OS, once the application software is loaded into
memory it will run the application without any host system.

 Coming to the hardware details of the embedded system, it consists of the following
important blocks.

 CPU (Central Processing Unit)

 RAM and ROM

 I/O Devices

 Communication Interfaces

 Sensors etc. (Application specific circuitry)

of the RAM also varies from a few bytes to KB or MB depending on the application.

Recent Trends in Embedded Systems:

• With the fast developments in semiconductor industry and VLSI technology ,one can find
tremendous changes in the embedded system design in terms of processor speed , power
, communication interfaces including network capabilities and software developments like
operating systems and programming languages etc.

• Processor speed and Power :With the advancements in processor technology ,the
embedded systems are now a days designed with 32,64 bit processors which can work in
real time environment. These processors are able to perform high speed signal processing
activities which resulted in the development of high definition communication devices like
3G mobiles etc.

• Also the recent developments in VLSI technology has paved the way for low power battery
operated devices which are very handy and have high longetivity. Also , the present day
embedded systems are provided with higher memory capabilities ,so that most of them
are based on tiny operating systems like android etc

• Communication interfaces : Most of the present day embedded systems are aimed at
internet based applications. So,the communication interfaces like Ethernet, USB, wireless

LAN etc.have become very common resources in almost all the embedded systems. The
developments in memory technologies also helped in porting the TCP/IP protocol stack
and the HTTP server software on to the embedded systems. Such embedded systems can
provide a link between any two devices anywhere in the globe.

• Operating systems : With recent software developments ,there is a considerable growth in
the availability of operating systems for embedded systems. Mainly new operating systems
are developed which can be used in real time applications. There are both commercial
RTOSes like Vx Works , QNX,WIN-CE and open source RTOSes like RTLINUX etc. The
Android OS in mobiles has revolutionized the embedded industry.

• Programming Languages : There is also a remarkable development in the programming
languages. Languages like C++, Java etc. are now widely used in embedded application
programming. For example by having the Java virtual machine in a mobile phones ,one can
download Java applets from a server and can be executed on your mobile. In addition to
these developments, now a days we also find new devices like ASICs and FPGAs in the
embedded system market. These new hardware devices are popular as programmable
devices and reconfigurable devices.

Hardware Architecture of Embedded System

Central Processing Unit:

• A CPU is composed of an Arithmetic Logic Unit (ALU), a Control Unit (CU), and many
internal registers that are connected by buses.

• The ALU performs all the mathematical operations (Add, Sub, Mul, Div), logical operations
(AND, OR), and shifting operations within CPU. The timing and sequencing of all CPU
operations are controlled by the CU, which is actually built of many selection circuits
including latches and decoders. The CU is responsible for directing the flow of instruction
and data within the CPU and continuously running program instructions step by step.

• For embedded system design, many factors impact the CPU selection, e.g., the maximum
size (number of bits) in a single operand for ALU (8, 16, 32, 64 bits), and CPU clock
frequency for timing tick control, i.e. the number of ticks (clock cycles) per second in
measures of MHz .

• The CORE in the embedded system may be a general purpose processor like a
microcontroller or a special purpose processor like a DSP (Digital signal processor). But any
CORE consists of an Arithmetic Logic Unit (ALU), a Control Unit (CU), and many internal
registers that are connected by buses.

• In an embedded system, the CPU may never stop and run forever .The CPU works in a cycle
of fetching an instruction, decoding it, and executing it, known as the fetch-decode-
execute cycle. The cycle begins when an instruction is fetched from a memory location
pointed to by the PC to the IR via the data bus.

• When data and code lie in different memory blocks, then the architecture is referred as
Harvard architecture. In case data and code lie in the same memory block, then the
architecture is referred as Von Neumann architecture.

• Von Neumann Architecture:

• The Von Neumann architecture was first proposed by a computer scientist John von
Neumann. In this architecture, one data path or bus exists for both instruction and data.
As a result, the CPU does one operation at a time. It either fetches an instruction from
memory, or performs read/write operation on data. So an instruction fetch and a data
operation cannot occur simultaneously, sharing a common bus.

• Von-Neumann architecture supports simple hardware. It allows the use of a single,
sequential memory. Today's processing speeds vastly outpace memory access times, and
we employ a very fast but small amount of memory (cache) local to the processor.

Harvard Architecture:

• Computers have separate memory areas for program instructions and data using internal
data buses, allowing simultaneous access to both instructions and data.

Memory:

• Embedded system memory can be either on-chip or off-chip.

• On chip memory access is much fast than off-chip memory, but the size of on-chip
memory is much smaller than the size of off-chip memory.

• The ROM, EPROM, and Flash memory are all read-only type memories often used to store
code in an embedded system.

• The embedded system code does not change after the code is loaded into memory. The
ROM is programmed at the factory and cannot be changed over time.

• The newer microcontrollers come with EPROM or Flash instead of ROM.

• Most microcontroller development kits come with EPROM as well.

• EPROM and Flash memory are easier to rewrite than ROM. EPROM is an Erasable
Programmable

• The size of EPROM ranges up to 32kb in most embedded systems.

• Flash memory is an EPROM which can be programmed from software so that the
developers don‘t need to physically remove the EPROM from the circuit to re-program it.

• It is much quicker and easier to re-write Flash than other types of EPROM.

• When the power is on, the first instruction in ROM is loaded into the PC and then the CPU
fetches the instruction from the location in the ROM pointed to by the PC and stores it in
the IR to start the continuous CPU fetch and execution cycle. The PC is advanced to the
address of the next instruction depending on the length of the current instruction or the
destination of the Jump instruction.

• The memory is divided into Data Memory and Code Memory.

• Most of data is stored in Random Access Memory (RAM) and code is stored in Read Only
Memory (ROM).

• This is due to the RAM constraint of the embedded system and the memory organization.
The RAM is readable and writable, faster access and more expensive volatile storage,
which can be used to store either data or code.

• Once the power is turned off, all information stored in the RAM will be lost.

• The RAM chip can be SRAM (static) or DRAM (dynamic) depending on the manufacturer.
SRAM is faster than DRAM, but is more expensive

 I/O Ports:

• The I/O ports are used to connect input and output devices. The common input devices for
an embedded system include keypads, switches, buttons, knobs, and all kinds of sensors
(light, temperature, pressure, etc).

• The output devices include Light Emitting Diodes (LED), Liquid Crystal Displays (LCD),
printers, alarms, actuators, etc. Some devices support both input and output, such as
communication interfaces including Network Interface Cards (NIC), modems, and mobile
phones

Communication Interfaces:

• To transfer the data or to interact with other devices, the embedded devices are provided
the various communication interfaces like RS232, RS422, RS485,USB, SPI(Serial Peripheral
Interface) ,SCI (Serial Communication Interface) ,Ethernet etc.

Application Specific Circuitry:

• The embedded system sometimes receives the input from a sensor or actuator. In such
situations certain signal conditioning circuitry is needed. This hardware circuitry may
contain ADC, Op-amps, DAC etc.

ADC & DAC:

• Many embedded system application need to deal with non-digital external signals such as
electronic voltage, music or voice, temperature, pressures, and many other signals in the
analog form.

• The digital computer does not understand these data unless they are converted to digital
formats.

• The ADC is responsible for converting analog values to binary digits.

• The DAC is responsible for outputting analog signals for automation controls such as DC
motor.

• In addition to these peripherals, an embedded system may also have sensors, Display
modules like LCD or Touch screen panels, Debug ports c,ertain communication peripherals
like I2C, SPI, Ethernet, CAN, USB for high speed data transmission. Now a days various
sensors are also becoming an important part in the design of real time embedded
systems. Sensors like temperature sensors, light sensors, PIR sensors, gas sensors are
widely used in application specific circuitry.

Power supply:

• Most of the embedded systems now days work on battery operated supplies.

Because low power dissipation is always required. Hence the systems are designed to work
with batteries

Clock:

The clock is used to control the clocking requirement of the CPU for executing instructions
and the configuration of timers.

• The watchdog timer is a special timing device that resets the system after a preset time
delay in case of system anomaly. The watchdog starts up automatically after the system
power up.

• One need to reboot the PC now and then due to various faults caused by hardware or
software. An embedded system cannot be rebooted manually, because it has been
embedded into its system. That is why many microcontrollers come with an on-chip
watchdog timer which can be configured just like the counter in the regular timer. After a
system gets stuck (power supply voltage out of range or regular timer does not issue
timeout after reaching zero count) the watchdog eventually will restart the system to
bring the system back to a normal operational condition.

Real Time Embedded Systems

• A real-time embedded system is a particular version of an embedded system that works on
the basis of real-time computing represented by a dedicated type of operating system —
RTOS.

• Its working principles are as follows:

• Quick response to external factors: an embedded system must work within fixed time
constraints.

• Predictability: an embedded system must be deterministic or predictable, meaning that no
deviations are allowed.

• The deadline is above all: meeting the deadline is more important than other performance
characteristics.

• Operational failures may lead to catastrophe: if a task does not meet time limits, it
negatively affects users and may even lead to fatal results.

Categories of Real-Time Embedded Systems:

Real-time embedded systems fall into three categories —

• soft,

• firm and

• hard

depending on the acceptability of violation of time constraints:

• Hard — timing constraints must not be violated. For such built-in systems, it’s crucial that
the deadline is met in all cases. No errors are acceptable as they will lead to harmful
effects and the device will totally lose its operation value. An air defense system that needs
to detect and intercept an attacking missile within milliseconds has this type of embedded
system. Its failure jeopardizes human lives. Other examples are airplane sensors or self-
driving car control systems.

• Firm — exceeding the deadline is occasionally permitted, though it is undesirable.
Operating failures of firm real-time systems don’t result in harmful effects. But devices lose
their performance value because of such failures. Manufacturing robots refer to this
category.

• Soft — exceeding the deadline is acceptable. Response failures of soft real-time systems
diminish user experience, but they don’t reduce the performance value at once. If such a
system fails to meet a deadline, it will either recover or gradually diminish its operation.
For example, TV router boxes and gaming consoles refer to soft real-time embedded
systems. Time lags in their operation may happen, but they have either insignificant or no
consequences.

Physical Constraints:

• These refer to hardware components, the required characteristics of the device itself and
external environmental factors. Embedded engineers usually have to create a product that
should satisfy the following conditions:

• Definite device size

• Spatial constraints for device installation

• Limited memory and power consumption

• Certain environmental conditions for device operation (temperature, humidity, pressure)

Timing Constraints:

The very essence of real-time systems is that they must respond to events within predefined time
limits. The most severe challenge for developers is to create a system capable of meeting the
deadline under any conditions. They must do accurate calculations and build the appropriate task
scheduling system to succeed.

Task Scheduling

• For real-time systems, it’s crucial to organize data processing strictly following timing
constraints. Real-time operating systems comprise scheduling algorithms that are
responsible for managing these constraints. Thus, quick responses to events directly
depend on which scheduling algorithm you choose for your real-time embedded solution.

• There are preemptive and non- preemptive algorithms, and software engineers can choose
from several popular types.

• Priority scheduling. This algorithm prioritizes all tasks and puts forward the task with the
highest priority to be performed first by the processor. A preventive version of the
algorithm stops a running task if there is another one with a higher priority in the queue. A

non-preventive version doesn’t stop running tasks, but a higher priority task will be the
next in the line. This approach doesn’t suit tasks with equal priority.

• Round-robin scheduling. This is a preventive scheduling algorithm that doesn’t prioritize
tasks. Instead, it allocates an equal time interval (e.g., 500 ms) for each task, and the CPU
processes them one by one. One task may go several rounds to be completed. This
approach is relatively easy and straightforward.

• First come, first served (FCFS). This is a non-preventive algorithm that puts tasks into the
running state depending on the time they arrive. The process is straightforward: the task
that comes first is the first to utilize the computing power. This algorithm ensures a high
response time.

• Shortest job first (SJF). The non-preventive version of this algorithm allocates tasks
depending on their execution time: the task with the shortest execution time is run next.
The preventive variant can interrupt running tasks if a task with a shorter remaining
execution period arrives.

Robots and Robotics:

• A robot is a type of automated machine that can execute specific tasks with little or no
human intervention and with speed and precision. The field of robotics, which deals with
robot design, engineering and operation

• Robots can perform some tasks better than humans, but others are best left to people and
not machines.

• Robot: It is a machine capable of carrying out a complex series of actions automatically,
especially one programmable by computer.

• According to ISO It is an automatically controlled, reprogrammable, multipurpose
manipulator (robot with fixed base) programmable in three or more axes, which can either
be fixed in place or mobile for use in industrial automation applications.

• According to RIA (Root Institute of America), It is reprogrammable multi-Functional
manipulator designed to move materials, parts, tools or specialized devices through
variable programmed motions for the performance of a variety of tasks.

• Manipulator: Mechanical Hand. We model, design and develop the human hand in the
form of an artificial Hand. It is reprogrammable and multifunctional.

• CNC: Computerized Numerical Control Machine-We can perform a variety of tasks by
changing the program. Similarly, the same Robot can be used to perform variety of tasks
by reprogramming it. But the level of reprogrammability differs in CNC machine and
Robot(more).

• Robotics: It is the science which deals with the issues related to design, manufacturing and
usage of robots.

• 3H’s of Human beings are copied into Robotics such as

 Hand-with Manipulator

 Head-with Intelligence

 Heart-with emotions

Machines that can replace human beings as regards to physical work and decision making are
categorized as Robots and their study as robotics.

• Czech writer ,Karel Capek in his drama introduced the word robot to the world in1921.It is
derived from the Czech word robota meaning “forced labourer”.

• Isaac Asimov the well known Russian science fiction writer coined the word Robotics in his
story “Runaround” , published in 1942 to denote the science devoted to the study of
Robotics.

• The robot technology is advancing rapidly. Robots and robot like manipulators are now
commonly employed in hostile environment such as at various places in an atomic plant
for handling radio active materials.

• Robots are being employed to construct and repair space stations and satellites.

• There are now increasing number of applications of robots such as in nursing and aiding a
patient. Microrobots are being designed to do damage control inside human veins.

• One type of robot commonly used in the industry is a robotic manipulator or simply a
robotic arm.

• It is an open or closed kinematic chain of rigid links interconnected by movable joints.

• In some configurations, links can be considered to correspond to human anatomy as waist,
upper arm, and forearm with joints at shoulder and elbow.

• At the end of the arm, a wrist joint connects an end effector to the forearm.

• The end effector may be a tool and its a fixture or a gripper or any other device to do work
. The end effector is similar to the human hand with or without fingers.

Motivation behind Robotics: To cope up with increasing demands of a dynamic and competitive
market, modern manufacturing methods should satisfy the following requirements:

 Reduced Production Cost

 Increased Productivity

 Improved Product Quality

 Laws of Robotics:

1) A robot should not injure a human being or through inaction allow a human to be
harmed.

2) A robot must obey orders given by humans except when that conflicts with the first law.

3)A robot must protect its own existence unless that conflicts with the first or second law.

The following are things robots do better than humans:

• Automate manual or repetitive activities in corporate or industrial settings.

• Work in unpredictable or hazardous environments to spot hazards like gas leaks.

• Process and deliver reports for enterprise security.

• Fill out pharmaceutical prescriptions and prep IVs.

• Deliver online orders, room service and even food packets during emergencies.

• Assist during surgeries.

• Robots can also make music, monitor shorelines for dangerous predators, help with search
and rescue and even assist with food preparation.

Different Types of robots

• There are as many different types of robots as there are tasks.

1. Androids

Androids are robots that resemble humans. They are often mobile, moving around on wheels or
a track drive. According to the American Society of Mechanical Engineers, these humanoid robots
are used in areas such as caregiving and personal assistance, search and rescue, space
exploration and research, entertainment and education, public relations and healthcare,
and manufacturing.

2. Telechir

A telechir is a complex robot that is remotely controlled by a human operator for a telepresence
system. It gives that individual the sense of being on location in a remote, dangerous or alien
environment, and enables them to interact with it since the telechir continuously provides
sensory feedback.

3. Telepresence robot

A telepresence robot simulates the experience -- and some capabilities -- of being physically
present at a location. It combines remote monitoring and control via telemetry sent over radio,

wires or optical fibers, and enables remote business consultations, healthcare, home monitoring,
childcare and more.

4. Industrial robot

• The IFR (International Federation of Robotics) defines an industrial robot as an
"automatically controlled, reprogrammable multipurpose manipulator programmable in
three or more axes." Users can adapt these robots to different applications as well.
Combining these robots with AI has helped businesses move them beyond simple
automation to higher-level and more complex tasks.

• In 2019, there were over 390,000 industrial robots installed worldwide, according to the
IFR -- with China, Japan and the U.S. leading the way.

In industrial settings, such robots can do the following:

• optimize process performance;

• automate production to increase productivity and efficiency;

• speed up product development;

• enhance safety; and

lower costs.

5. Swarm robot

Swarm robots (aka insect robots) work in fleets ranging from a few to thousands, all under the
supervision of a single controller. These robots are analogous to insect colonies, in that they
exhibit simple behaviors individually, but demonstrate behaviors that are more sophisticated
with an ability to carry out complex tasks in total.

6. Smart robot

This is the most advanced kind of robot. The smart robot has a built-in AI system that learns from
its environment and experiences to build knowledge and enhance capabilities to continuously
improve. A smart robot can collaborate with humans and help solve problems in areas like the
following:

• agricultural labor shortages;

• food waste;

• study of marine ecosystems;

• product organization in warehouses; and

• clearing of debris from disaster zones.

Microprocessors and Microcontrollers

Microprocessor

• The microprocessor is useful in very intensive processes. It only contains a CPU (central
processing unit) but there are many other parts needed to work with the CPU to complete
a process. These all other parts are connected externally.

• Microprocessors are not made for a specific task as well as they are useful where tasks are
complex and tricky like the development of software, games, and other applications that
require high memory and where input and output are not defined.

• Eg: Complex home security, Home computers, Video game systems

Microcontroller

• The microcontroller is designed for a specific task or to perform the assigned task
repeatedly. Once the program is embedded on a microcontroller chip, it can’t be altered
easily and you may need some special tools to reburn it.

• As per application, the process is fixed in microcontroller. Hence, the output depends on
the input given by the user or sensors or predefined inputs.

• e.g. Calculator, Washing Machine, ATM machine, Robotic Arm, Camera, Microwave oven,
Oscilloscope, Digital multimeter, ECG Machine, Printer

Differences between Microprocessor and Micro-controller

Microprocessor Microcontroller

Brief overview

• Microprocessor consists of only a Central Processing Unit, whereas Micro Controller
contains a CPU, Memory, I/O all integrated into one chip.

• The microprocessor is useful in Personal Computers whereas Micro Controller is useful in
an embedded system.

• The microprocessor uses an external bus to interface to RAM, ROM, and other peripherals,
on the other hand, Microcontroller uses an internal controlling bus.

• Microprocessors are based on Von Neumann model Microcontrollers are based on Harvard
architecture

• The microprocessor is complicated and expensive, with a large number of instructions to
process but Microcontroller is inexpensive and straightforward with fewer instructions to
process.

Microcontrollers (Embedded Controllers)

• A microcontroller is a compact integrated circuit designed to govern a specific operation in
an embedded system. A typical microcontroller includes a processor, memory and
input/output (I/O) peripherals on a single chip.

• Sometimes referred to as an embedded controller or microcontroller unit (MCU),
microcontrollers are found in vehicles, robots, office machines, medical devices, mobile
radio transceivers, vending machines and home appliances, among other devices. They are
essentially simple miniature personal computers (PCs) designed to control small features
of a larger component, without a complex front-end operating system (OS).

How do microcontrollers work?

• A microcontroller is embedded inside of a system to control a singular function in a device.
It does this by interpreting data it receives from its I/O peripherals using its central
processor. The temporary information that the microcontroller receives is stored in its data
memory, where the processor accesses it and uses instructions stored in its program
memory to decipher and apply the incoming data. It then uses its I/O peripherals to
communicate and enact the appropriate action.

• Devices often utilize multiple microcontrollers that work together within the device to
handle their respective tasks.

• For example, a car might have many microcontrollers that control various individual
systems within, such as the anti-lock braking system, traction control, fuel injection or
suspension control. All the microcontrollers communicate with each other to inform the
correct actions. Some might communicate with a more complex central computer within
the car, and others might only communicate with other microcontrollers. They send and
receive data using their I/O peripherals and process that data to perform their designated
tasks.

Elements of a microcontroller:

The core elements of a microcontroller are:

• The processor (CPU) -- A processor can be thought of as the brain of the device. It
processes and responds to various instructions that direct the microcontroller's function.
This involves performing basic arithmetic, logic and I/O operations. It also performs data
transfer operations, which communicate commands to other components in the larger
embedded system.

Memory -- A microcontroller's memory is used to store the data that the processor receives
and uses to respond to instructions that it's been programmed to carry out. A microcontroller
has two main memory types:

• Program memory, which stores long-term information about the instructions that
the CPU carries out. Program memory is non-volatile memory, meaning it holds
information over time without needing a power source.

• Data memory, which is required for temporary data storage while the instructions
are being executed. Data memory is volatile, meaning the data it holds is temporary
and is only maintained if the device is connected to a power source.

I/O peripherals -- The input and output devices are the interface for the processor to the outside
world. The input ports receive information and send it to the processor in the form of binary
data. The processor receives that data and sends the necessary instructions to output devices
that execute tasks external to the microcontroller.

There are many supporting components that can be classified as peripherals.

• Analog to Digital Converter (ADC) -- An ADC is a circuit that converts analog signals
to digital signals. It allows the processor at the center of the microcontroller to
interface with external analog devices, such as sensors.

• Digital to Analog Converter (DAC) -- A DAC performs the inverse function of an ADC
and allows the processor at the center of the microcontroller to communicate its
outgoing signals to external analog components.

• System bus -- The system bus is the connective wire that links all components of the
microcontroller together.

• Serial port -- The serial port is one example of an I/O port that allows the
microcontroller to connect to external components. It has a similar function to a USB
or a parallel port but differs in the way it exchanges bits.

Microcontroller features:

• A microcontroller's processor will vary by application. Options range from the simple 4-bit,
8-bit or 16-bit processors to more complex 32-bit or 64-bit processors.

• Microcontrollers can use volatile memory types such as random access memory (RAM) and
non-volatile memory types -- this includes flash memory, erasable programmable read-
only memory (EPROM) and electrically erasable programmable read-only memory
(EEPROM).

• Generally, microcontrollers are designed to be readily usable without additional computing
components because they are designed with sufficient onboard memory as well as offering

pins for general I/O operations, so they can directly interface with sensors and other
components.

• Microcontroller architecture can be based on the Harvard architecture or von Neumann
architecture, both offering different methods of exchanging data between the processor
and memory. With a Harvard architecture, the data bus and instruction are separate,
allowing for simultaneous transfers. With a Von Neumann architecture, one bus is used for
both data and instructions.

• Most of the microcontrollers are based on RISC architecture.

• MCUs feature input and output pins to implement peripheral functions. Such functions
include analog-to-digital converters, liquid crystal display (LCD) ,Sensors gathering data.

• Common MCUs include the Intel MCS-51, often referred to as an 8051 microcontroller,
which was first developed in 1985; the AVR microcontroller developed by Atmel in 1996;
the programmable interface controller (PIC) from Microchip Technology; and various
licensed Advanced RISC Machines (ARM) microcontrollers.

• Applications: Microcontrollers are used in multiple industries and applications, including in
the home and enterprise, building automation, manufacturing, robotics, automotive,
lighting, smart energy, industrial automation, communications and internet of things (IoT)
deployments

Classification of Robots

UNIT-2

• Robots can be classified based on the application or by their locomotion / kinematics.

• Classifying Robots by their Application: Based on this classification, there are two broad
ways of categorizing robots.

1) Industrial Robots

2)Service Robots

• Industrial Robots: These were one of the first robots to be used commercially. In a factory
assembly line, these are usually in the form of articulated arms specifically developed for
such applications as welding, material handling, painting and others.

• They can be further subdivided as:

1)Manufacturing Robots

2) Logistics Robots

• Manufacturing robots are designed to move materials, as well as perform a variety of
programmed tasks in manufacturing and production settings. They are often used to
perform duties that are dangerous or unsuitable for human workers.

• Logistics robots are mobile automated guided vehicles primarily used in warehouses and
storage facilities to transport goods.

• Service robots: The International Organization for Standardization defines a service robot
as ‘a robot that performs useful tasks for humans.’ They can be further subdivided as:

1. Medical robots

2. Home robots

3. Defence robots

4. Entertainment robots

5. Agricultural robots

6. Educational robots

 Medical robots are professional service robots that are used in and out of hospital settings
to improve the level of patient care. These robots reduce the workload of the medical
staff, which allows them to spend more time caring directly for patients. Mobile medical
robots are used for the delivery of medication and other sensitive materials in a hospital.

 Home robots automate tasks like cleaning and disinfecting.

 The primary purpose of Education robots is to make kids aware of their potential, utility,
and help kids build their own robots using readymade kits. Educational robots are used
extensively in schools, both in classrooms and in extracurricular activities.

 One of the most important uses of robots in defence is to ensure the safety of soldiers and
civilians. For example, remotely operated vehicles (ROVs) are used to carry out dangerous
tasks or activities in hazardous environments, drones are used for surveillance, and so on.

 Agricultural robots sense weather pattern and can adjust the watering of crop as needed,
can be used for sowing, de-weeding, and harvesting crops.

Classifying Robots by their Kinematics or Locomotion: Robots can also be classified according to
how they move – or not move.

 Cartesian Robots: these are perhaps the most common types of robots. They have three
axes which are linear i.e, they can only move in straight lines rather than rotating and are
mounted at right angles to each other. Because of their rigid structure, this type of robots
usually can offer good levels of precision and repeatability. Cartesian robots are mostly
used in the industrial and the manufacturing sector for pick and place type of operations.

 Cylindrical robots: The body of this type of robot is such that the robotic arm can move up
and down along a vertical member. The arm can rotate about that vertical axis and the arm
can also extend or contract. This construction makes the manipulator able to work in a
cylindrical space. They are used for assembly operations, spot welding and for die casting
machines. These cannot reach the objects lying on the floor.

Eg: Versatran 600

Spherical coordinate Robots(Polar coordinate Robots): This type of robot works in a spherical
system. It can move in a bi-angular and single linear direction. SCARA Robots: SCARA stands for
Selective Compliance Arm for Robotic Assembly. This type of robot has one linear and two rotary
movements. Can be used to pick up objects lying on the floor. They are used for assembly
purposes all over the world

Eg: Unimate 2000B

• Revolute coordinate or Articulated Robots: These are robots with a wide range of
movements that include forward, backward, upward and downward motion. Because of
their large work envelope, articulated robots can be used for several different applications
like assembly, arc welding, material handling, machine tending, and packaging.

Other types:

 Airborne Robots: these robots can fly through the air. Drones are an extremely popular
example of flying robots.

 Aquatic Robots: These robots can work on or under water. They are mostly used for
underwater exploration of oil, gas or minerals.

Joints and links

Two basic types types of joints are used in industrial robots

1)Revolute

2) Prismatic

Degree of freedom

Fig 1.9: Representation of six degrees of freedom

DOF of a system: Defined as the minimum number of independent
parameters/variables/coordinates needed to describe the system completely.

Motors:

• DC Motor: A DC motor is defined as a class of electrical motors that convert direct current
electrical energy into mechanical energy.

• From the above definition, we can conclude that any electric motor that is operated using
direct current or DC is called a DC motor.

Parts of a DC Motor

Armature or Rotor

The armature of a DC motor is a cylinder of magnetic laminations that are insulated from one
another. The armature is perpendicular to the axis of the cylinder. The armature is a rotating part
that rotates on its axis and is separated from the field coil by an air gap.

Field Coil or Stator

A DC motor field coil is a non-moving part on which winding is wound to produce a magnetic
field. This electro-magnet has a cylindrical cavity between its poles.

Commutator and Brushes

Commutator

The commutator of a DC motor is a cylindrical structure that is made of copper segments stacked
together but insulated from each other using mica. The primary function of a commutator is to
supply electrical current to the armature winding.

Brushes

The brushes of a DC motor are made with graphite and carbon structure. These brushes conduct
electric current from the external circuit to the rotating commutator. Hence, we come to
understand that the commutator and the brush unit are concerned with transmitting the power
from the static electrical circuit to the mechanically rotating region or the rotor.

DC Motor Working:

A magnetic field arises in the air gap when the field coil of the DC motor is energised. The created
magnetic field is in the direction of the radii of the armature. The magnetic field enters the
armature from the North pole side of the field coil and “exits” the armature from the field coil’s
South pole side.

The conductors located on the other pole are subjected to a force of the same intensity but in
the opposite direction. These two opposing forces create a torque that causes the motor
armature to rotate.

Working principle of DC motor

When kept in a magnetic field, a current-carrying conductor gains torque and develops a
tendency to move. In short, when electric fields and magnetic fields interact, a mechanical force
arises. This is the principle on which the DC motors work.

Types of DC motor

• Self Excited DC Motor

• Separately Excited DC Motor

Self Excited DC Motor

• In self-excited DC motors, the field winding is connected either in series or parallel to the
armature winding. Based on this, the self-excited DC motor can further be classified as:

1. Shunt wound DC motor

2. Series wound DC motor

3. Compound wound DC motor

Shunt wound DC motor:In a shunt wound motor, the field winding is connected parallel to the
armature

Series wound DC motor:In a series wound DC motor, the field winding is connected in series with
the armature winding

Compound wound DC motor:DC motors having both shunt and series field winding is known as
Compound DC motor, The compound motor is further divided into:

Cumulative Compound Motor

Differential Compound Motor

In a cumulative compound motor, the magnetic flux produced by both the windings is in the
same direction. In a differential compound motor, the flux produced by the series field windings
is opposite to the flux produced by the shunt field winding.

2) Separately Excited DC Motor: In a separately excited DC motor, the field coils are energised
from an external source of DC supply

Stepper Motor:

• A stepper motor is an electromechanical device it converts electrical power into
mechanical power. Also, it is a brushless, synchronous electric motor that can divide a full
rotation into an expansive number of steps. The motor’s position can be controlled
accurately without any feedback mechanism, as long as the motor is carefully sized to the
application.Construction & Working Principle:

• The construction of a stepper motor is fairly related to a DC motor. It includes a permanent
magnet like Rotor which is in the middle & it will turn once force acts on it. This rotor is
enclosed through a no. of the stator which is wound through a magnetic coil all over it. The
stator is arranged near to rotor so that magnetic fields within the stators can control the
movement of the rotor.

• The stepper motor can be controlled by energizing every stator one by one. So the stator
will magnetize & works like an electromagnetic pole which uses repulsive energy on the
rotor to move forward. The stator’s alternative magnetizing as well as demagnetizing will
shift the rotor gradually &allows it to turn through great control.

• The stepper motor working principle is Electro-Magnetism. It includes a rotor which is
made with a permanent magnet whereas a stator is with electromagnets. Once the supply
is provided to the winding of the stator then the magnetic field will be developed within
the stator. Now rotor in the motor will start to move with the rotating magnetic field of
the stator. So this is the fundamental working principle of this motor.

•

• In this motor, there is a soft iron that is enclosed through the electromagnetic stators. The
poles of the stator as well as the rotor don’t depend on the kind of stepper. Once the
stators of this motor are energized then the rotor will rotate to line up itself with the stator
otherwise turns to have the least gap through the stator. In this way, the stators are
activated in a series to revolve the stepper motor.

Driving Techniques

Single Excitation Mode

The basic method of driving a stepper motor is a single excitation mode. It is an old method and
not used much at present but one has to know about this technique. In this technique every
phase otherwise stator next to each other will be triggered one by one alternatively with a
special circuit. This will magnetize & demagnetize the stator to move the rotor forward.

Full Step Drive

In this technique, two stators are activated at a time instead of one in a very less time period.
This technique results in high torque & allows the motor to drive the high load.

Half Step Drive

This technique is fairly related to the Full step drive because the two stators will be arranged next
to each other so that it will be activated first whereas the third one will be activated after that.
This kind of cycle for switching two stators first &after that third stator will drive the motor. This
technique will result in improved resolution of the stepper motor while decreasing the torque.

Micro Stepping

• This technique is most frequently used due to its accuracy. The variable step current will
supply by the stepper motor driver circuit toward stator coils within the form of a
sinusoidal waveform. The accuracy of every step can be enhanced by this small step
current. This technique is extensively used because it provides high accuracy as well as
decreases operating noise to a large extent.

Servo Motors

• A servo motor is a type of motor that can rotate with great precision. Normally this type of
motor consists of a control circuit that provides feedback on the current position of the
motor shaft, this feedback allows the servo motors to rotate with great precision. If you
want to rotate an object at some specific angles or distance, then you use a servo motor. It
is just made up of a simple motor which runs through a servo mechanism.

• If motor is powered by a DC power supply then it is called DC servo motor, and if it is AC-
powered motor then it is called AC servo motor. For this tutorial, we will be discussing only
about the DC servo motor working. Apart from these major classifications, there are many
other types of servo motors based on the type of gear arrangement and operating
characteristics.

• A servo motor usually comes with a gear arrangement that allows us to get a very high
torque servo motor in small and lightweight packages. Due to these features, they are
being used in many applications like toy car, RC helicopters and planes, Robotics, etc.

• Servo motors are rated in kg/cm (kilogram per centimeter) most hobby servo motors are
rated at 3kg/cm or 6kg/cm or 12kg/cm. This kg/cm tells you how much weight your servo
motor can lift at a particular distance. For example: A 6kg/cm Servo motor should be able
to lift 6kg if the load is suspended 1cm away from the motors shaft, the greater the
distance the lesser the weight carrying capacity. The position of a servo motor is decided
by electrical pulse and its circuitry is placed beside the motor.

Servo Motor Working Mechanism

• It consists of three parts:

1. Controlled device

2. Output sensor

3. Feedback system

• It is a closed-loop system where it uses a positive feedback system to control motion and
the final position of the shaft. Here the device is controlled by a feedback signal generated
by comparing output signal and reference input signal.

• Here reference input signal is compared to the reference output signal and the third signal
is produced by the feedback system. And this third signal acts as an input signal to the
control the device. This signal is present as long as the feedback signal is generated or
there is a difference between the reference input signal and reference output signal. So
the main task of servomechanism is to maintain the output of a system at the desired
value at presence of noises.

• Servo Motor Working Principle

• A servo consists of a Motor (DC or AC), a potentiometer, gear assembly, and a controlling
circuit. First of all, we use gear assembly to reduce RPM and to increase torque of the

motor. Say at initial position of servo motor shaft, the position of the potentiometer knob
is such that there is no electrical signal generated at the output port of the potentiometer.

• Now an electrical signal is given to another input terminal of the error detector amplifier.
Now the difference between these two signals, one comes from the potentiometer and
another comes from other sources, will be processed in a feedback mechanism and output
will be provided in terms of error signal. This error signal acts as the input for motor and
motor starts rotating. Now motor shaft is connected with the potentiometer and as the
motor rotates so the potentiometer and it will generate a signal. So as the potentiometer’s
angular position changes, its output feedback signal changes.

• After sometime the position of potentiometer reaches at a position that the output of
potentiometer is same as external signal provided. At this condition, there will be no
output signal from the amplifier to the motor input as there is no difference between
external applied signal and the signal generated at potentiometer, and in this situation
motor stops rotating.

• Servo motor works on PWM (Pulse width modulation) principle, means its angle of
rotation is controlled by the duration of applied pulse to its Control PIN. Basically servo
motor is made up of DC motor which is controlled by a variable resistor (potentiometer)
and some gears. High speed force of DC motor is converted into torque by Gears. We
know that WORK= FORCE X DISTANCE, in DC motor Force is less and distance (speed) is
high and in Servo, force is High and distance is less. The potentiometer is connected to the
output shaft of the Servo, to calculate the angle and stop the DC motor on the required
angle.

• Servo motor can be rotated from 0 to 180 degrees, but it can go up to 210 degrees,
depending on the manufacturing. This degree of rotation can be controlled by applying
the Electrical Pulse of proper width, to its Control pin. Servo checks the pulse in every 20

milliseconds. The pulse of 1 ms (1 millisecond) width can rotate the servo to 0 degrees,
1.5ms can rotate to 90 degrees (neutral position) and 2 ms pulse can rotate it to 180
degree.

• All servo motors work directly with your +5V supply rails but we have to be careful about
the amount of current the motor would consume if you are planning to use more than two
servo motors a proper servo shield should be designed.

Types of Gears:

• A gear is a toothed cylindrical or roller shape component of a machine which meshes with
another toothed cylindrical to transmit power from one shaft to another. It is mainly used
to obtain different torque and speed ratio or changing the direction of driving shaft and
driven shaft.

• Principle:

• It works on the basic principle of thermodynamic which state that energy is neither be
created or destroyed or we can say it is conservative. it can be converted into one form to
another. We know that power is the function of speed and torque or we can say that
power is product of torque (Force in rotary motion) and speed (P = TV) of the shaft. So
when we connect a small gear on driving shaft and a larger gear on driven shaft, the speed
decreases of driven shaft per unit rotation of driving shaft.

Types of Gears:

Gears can be classified in various types according to construction of teeth, Use, the
direction of motion transfer etc. but basically it is classified according to design of teeth.

1. Spur Gear:

These gears are used to transmit the power in same plane or when the driving and driven
shafts are parallel to each other. In this type of gear teeth are cut parallel to the axis of the
shafts so when is meshes with another spur gear it transmit the power in parallel shaft and
when it connects with the helical gear it will transmit power at an angle from the driving
axis.

2. Helical Gear:

• On the helical gears teeth are cut at an angle from the axis of it. It has cylindrical roller with
helicoid teeth. The main advantage of helical gears is that they work with less noise and
vibration because the load is distributed on the full helix as compared to spur gears. It also
has less wear and tear due to which they are widely used in industries. It also used for
transmit power in parallel shaft but sometime they are used to transmit power in non-
parallel shaft also. In the helical gears if the pinion (driving gear) is cut with right handed
teeth then the gear (driven gear) is cut with left handed of in opposite direction.

3. Double Helical or Herringbone Gear:

• This gear has both right and left handed teeth on one gear. This gear is use to provide
additional shear area on gear which further required for higher torque transmission. This is
same as helical.

4. Bevel Gear:

• This gear is used to transmit power between perpendiculars. The driving shaft and driven
shaft makes a right angle with each other and both the axis of shaft meets each other at
one point. This gear has helical or spiral teeth on a conical shaped geometry and meshes
with the same gear.

5. Rack and Pinion Gear:

• This gear is used in steering system of automobile. In this type of gear, teeth are cut on a
straight rectilinear geometry know as rack and one spur gear known as pinion. This is used
to transmit rotary motion to linear motion. It is seen as the infinite radius driven gear.

6. Worm Gear:

• This type of gear is used to transmit the power in nonintersecting shaft which makes right
angle. In this type of arrangement the driving gear is a screw gear and the driven gear is
helical gear or gear with spiral teeth as shown in figure.

Software used for robot programming:

• A “robotics software platform” is a software package which simplifies programming of
several kinds of robotic devices by providing

• a unified programming environment;

• a unified service execution environment;

• a set of reusable components;

• a debugging/simulation environment;

• a package of “drivers” for most wide-spread robotics hardware

• a package of common facilities such as computer vision, navigation or robotic arm control

1. Offline Programming

• RoboDK, offline programming software provides a way for you to program your industrial
robot without needing to be physically connected to the robot at the time. This means that
you don’t need to take the robot out of production to program it. It reduces downtime,
improves the quality of programming, and allows you to change between product lines
quickly, amongst other benefits.

2. Simulators

Robot simulators come in many forms. Some only allow for simple 2D simulation of specific
aspects of robotics whilst others include 3D simulation with complex physics engines and
realistic environments.

• As well as being an offline programming tool, RoboDK is also a great simulator. It is simple
enough to allow you to easily program your robot whilst being powerful enough to handle
many different use cases.

3. Middleware:

Middleware is the “software glue” that helps robot builders to avoid reinventing the wheel
when they are designing a new robotic system. Robot middleware provides a framework
for running and managing complex robotic systems from a single unified interface. f you
were building your own robotic system with multiple components or looking to coordinate
multiple robots, you might use middleware

4. Mobile Robot Planning : Mobile robots are programmed in a different way from other
robots which means using a different type of software too. For example, path planners are
used to program the route that the robot will take through the environment while
obstacle avoidance algorithms react to changes in the moment.

5. Real-Time Path Planning

Path planning software is used in many areas of robotics. Basic path planners, are simply
used to speed up the programming phase for industrial robotics. Real-time path planning is
much more complex and is based on teaching–learning-based optimization (TLBO) USING
AI.

6. UAV (Drone) Control

A growing type of robotic software is drone control. This refers to any software which is
used to program and coordinate unmanned aerial vehicles (UAVs/drones). DroneDeploy,
PIX4D are examples of software used in drone control

(https://surveyinggroup.com/top-5-drone-mapping-softwares-that-you-will-need-on-your-
project)

7. Artificial Intelligence for Robots

• Artificial intelligence (AI) has been used with robotics for many years — almost as long as
robotics have been around. However, there has recently been a rising number of software
solutions specifically for using AI with robots in particular application areas. As with the
other types of robot software, AI tends to be focused on specific aspects of these
applications, such as analyzing images collected in agricultural settings, filtering
operational data in manufacturing environments, or coordinating swarms of mobile robots
in logistics.

UNIT-3

The AVR RISC microcontroller architecture

AVR Microcontroller:
Microcontroller: Microcontroller can be termed as a single on chip computer which includes number of peripherals like

RAM,EEPROM, Timers etc., required to perform some predefined task.

Fig. 1: Block Diagram Showing Architecture of AVR Microcontroller

Does this mean that the microcontroller is another name for a computer…? The answer is NO!

The computer on one hand is designed to perform all the general purpose tasks on a single machine like you can

use a computer to run a software to perform calculations or you can use a computer to store some multimedia file or to

access internet through the browser, whereas the microcontrollers are meant to perform only the specific tasks, for e.g.,

switching theAC off automatically when room temperature drops to a certain defined limit and again turning it ON when

temperature risesabove the defined limit.

There are number of popular families of microcontrollers which are used in different applications as per their

capability and feasibility to perform the desired task, most common of these are 8051, AVR and PIC microcontrollers.

In this article we willintroduce you with AVR family of microcontrollers.

History of AVR

AVR was developed in the year 1996 by Atmel Corporation. The architecture of AVR was developed by Alf-

Egil Bogen and Vegard Wollan. AVR derives its name from its developers and stands for Alf-Egil Bogen Vegard Wollan

RISCmicrocontroller, also known as Advanced Virtual RISC. The AT90S8515 was the first microcontroller which was

based on AVR architecture however the first microcontroller to hit the commercial market was AT90S1200 in the year

1997.

AVR microcontrollers are available in three categories:

1. TinyAVR – Less memory, small size, suitable only for simpler applications

2. MegaAVR – These are the most popular ones having good amount of memory (upto 256 KB), higher number of inbuilt

peripherals and suitable for moderate to complex applications.

3. XmegaAVR – Used commercially for complex applications, which require large program memory and high speed.

The following table compares the above mentioned AVR series of microcontrollers:

Series Name Pins Flash Memory Special

Feature

TinyAVR 6-32 0.5-8 KB Small in size

MegaAVR 28-100 4-256KB Extended
peripherals

XmegaAVR 44-100 16-384KB DMA , Event
System
included

Importance of AVR

What’s special about AVR?

They are fast: AVR microcontroller executes most of the instructions in single execution cycle. AVRs are about

4 times faster than PICs, they consume less power and can be operated in different power saving modes. Let’s do the

comparison between the three most commonly used families of microcontrollers.

 8051 PIC AVR

SPEED Slow Moderate Fast

MEMORY Small Large Large

ARCHITECTURE CISC RISC RISC

ADC Not Present Inbuilt Inbuilt

Timers Inbuilt Inbuilt Inbuilt

PWM Channels Not Present Inbuilt Inbuilt

AVR is an 8-bit microcontroller belonging to the family of Reduced Instruction Set Computer (RISC). In RISC

architecture theinstruction set of the computer are not only fewer in number but also simpler and faster in operation. The

other type of categorization is CISC (Complex Instruction Set Computers). Click to find out differences between RISC

and CISC. We will explore more on this when we will learn about the architecture of AVR microcontrollers in following

section.

Let’s see what all this means. What is 8-bit? This means that the microcontroller is capable of transmitting and receiving 8-

bitdata. The input/output registers available are of 8-bits. The AVR family controllers have register based architecture which

means that both the operands for an operation are stored in a register and the result of the operation is also stored in a

register. Following figure shows a simple example performing OR operation between two input registers and storing the

valuein Output Register.

Simple Example Carrying Out OR Operation Between Two Input Registers And Value Storage In Output Register

The CPU takes values from two input registers INPUT-1 and INPUT-2, performs the logical operation and stores the value
into

the OUTPUT register. All this happens in 1 execution cycle.

In our journey with the AVR we will be working on Atmega16 microcontroller, which is a 40-pin IC and belongs

to themegaAVR category of AVR family. Some of the features of Atmega16 are:

· 16KB of Flash memory
· 1KB of SRAM
· 512 Bytes of EEPROM
· Available in 40-Pin DIP
· 8-Channel 10-bit ADC
· Two 8-bit Timers/Counters
· One 16-bit Timer/Counter
· 4 PWM Channels
· In System Programmer (ISP)
· Serial USART
· SPI Interface
· Digital to Analog Comparator.

Architecture of AVR

The AVR microcontrollers are based on the advanced RISC architecture and consist of 32 x 8 -bit general purpose working registers. Within one

single clock cycle, AVR can take inputs from two general purpose registers and put them to ALU for carrying out the requested operation, and transfer

back the result to an arbitrary register. The ALU can perform arithmetic aswell as logical operations

over the inputs from the register or between the register and a constant. Single register operations like taking a complementcan also be executed in

ALU. We can see that AVR does not have any register like accumulator as in 8051 family of microcontrollers; the operations can be performed

between any of the registers and can be stored in either of them.

AVR follows Harvard Architecture format in which the processor is equipped with separate memories and buses for Programand the Data information.

Here while an instruction is being executed, the next instruction is pre-fetched from the program memory.

Fig. 3: Block Diagram Of memory architecture In AVR

Since AVR can perform single cycle execution, it means that AVR can execute 1 million instructions per second if cycle frequency is 1MHz. The higher

is the operating frequency of the controller, the higher will be its processing speed. We need to optimize the power consumption with processing speed

and hence need to select the operating frequency accordingly.

There are two flavors for Atmega16 microcontroller:

1. Atmega16:- Operating frequency range is 0 – 16 MHz.

2. Atmega16L:- Operating frequency range is 0 – 8 MHz.

If we are using a crystal of 8 MHz = 8 x 106 Hertz = 8 Million cycles, then AVR can execute 8 million instructions.

Naming Convention.!

The AT refers to Atmel the manufacturer, Mega means that the microcontroller belong to MegaAVR category, 16 signifies the memory of the controller,

which is 16KB.

Fig. 4: Naming Convention Of AVR Microcontroller

Architecture Diagram: Atmega16

Following points explain the building blocks of Atmega16 architecture:

· I/O Ports: Atmega16 has four (PORTA, PORTB, PORTC and PORTD) 8-bit input-output ports.

· Internal Calibrated Oscillator: Atmega16 is equipped with an internal oscillator for driving its clock. By default Atmega16 is set to operate at internal

calibrated oscillator of 1 MHz. The maximum frequency of internal oscillator is 8Mhz. Alternatively, ATmega16 can be operated using an external crystal oscillator

with a maximum frequency of 16MHz.In this case you need to modify the fuse bits. (Fuse Bits will be explained in a separate tutorial).

· Fig. 5: Block Diagram Explaining AVR Architecture

ADC Interface: Atmega16 is equipped with an 8 channel ADC (Analog to Digital Converter) with a resolution of 10-bits.ADC reads the analog input for

e.g., a sensor input and converts it into digital information which is understandable by themicrocontroller.

· Timers/Counters: Atmega16 consists of two 8 -bit and one 16-bit timer/counter. Timers are useful for generating precision actions for e.g., creating time

delays between two operations.

· Watchdog Timer: Watchdog timer is present with internal oscillator. Watchdog timer continuously monitors and resetsthe controller if the code gets stuck at

any execution action for more than a defined time interval.

· Interrupts: Atmega16 consists of 21 interrupt sources out of which four are external. The remaining are internal interrupts which support the peripherals

like USART, ADC, Timers etc.

· USART: Universal Synchronous and Asynchronous Receiver and Transmitter interface is available for interfacingwith external device capable of

communicating serially (data transmission bit by bit).

General Purpose Registers: Atmega16 is equipped with 32 general purpose registers which are coupled directly withthe Arithmetic Logical Unit

(ALU) of CPU.

· Memory: Atmega16 consist of three different memory sections:

1. Flash EEPROM : Flash EEPROM or simple flash memory is used to store the program dumped or burnt by the useron to the microcontroller. It can be easily

erased electrically as a single unit. Flash memory is non-volatile i.e., it retains the program even if the power is cut-off. Atmega16 is available with 16KB of in system

programmable Flash EEPROM.

2. Byte Addressable EEPROM: This is also a nonvolatile memory used to store data like values of certain variables. Atmega16 has 512 bytes of EEPROM, this

memory can be useful for storing the lock code if we are designing anapplication like electronic door lock.

3. SRAM: Static Random Access Memory, this is the volatile memory of microcontroller i.e., data is lost as soon aspower is turned off. Atmega16 is equipped

with 1KB of internal SRAM. A small portion of SRAM is set aside for general purpose registers used by CPU and some for the peripheral subsystems of the

microcontroller.

· ISP: AVR family of controllers have In System Programmable Flash Memory which can be programmed withoutremoving the IC from the circuit, ISP

 allows to reprogram the controller while it is in the application circuit.

· SPI: Serial Peripheral Interface, SPI port is used for serial communication between two devices on a common clocksource. The data transmission rate of

SPI is more than that of USART.

· TWI: Two Wire Interface (TWI) can be used to set up a network of devices, many devices can be connected over TWIinterface forming a network, the devices

can simultaneously transmit and receive and have their own unique address.

· DAC: Atmega16 is also equipped with a Digital to Analog Converter (DAC) interface which can be used for reverseaction performed by ADC. DAC can be

used when there is a need of converting a digital signal to analog signal.

MegaAVR Family

Various microcontroller of MegaAVR series:

Part
Name

R
O
M

R
A
M

EEP
ROM

I/
0
Pi
n
s

Ti
m
er

Interr
upts

Operation V
oltage

Opera
ting
frequ
ency

Packa
ging

 ATmeg
a8

8
K
B

1
K
B

512B 2
3

3 19 4.5-5.5 V 0-16
MHz

28

 ATmeg
a8L

8
K
B

1
K
B

512B 2
3

3 19 2.7-5.5 V 0-8
MHz

28

 ATmeg
a16

16
K
B

1
K
B

512B 3
2

3 21 4.5-5.5 V 0-16
MHz

40

ATmeg 16 1 512B 3 3 21 2.7-5.5 V 0-8 40

 a16L K
B

K
B

 2 MHz

 ATmeg
a32

32
K
B

2
K
B

1KB 3
2

3 21 4.5-5.5 V 0-16
MHz

40

 ATmeg
a32L

32
K
B

2
K
B

1KB 3
2

3 21 2.7-5.5 V 0-8
MHz

40

AVR Microcontroller:

AVR microcontroller is an electronic chip manufactured by Atmel, which has several advantages over other types o
microcontroller.

We can understand microcontroller by comparing it with Personal Computer (PC), which has a motherboard inside it. In tha
motherboard a microprocessor (AMD, Intel chips) is used that provides the intelligence, EEPROM and RAM memories fo
interfacing to the system like serial ports, display interfaces and disk drivers. A microcontroller has all or most of these feature
built into a single chip, therefore it doesn?t require a motherboard and any other components.

f

t
r
s

AVR microcontroller comes in different configuration, some designed using surface mounting and some designed using hole
mounting. It is available with 8-pins to 100-pins, any microcontroller with 64-pin or over is surface mount only.

Some mostly used AVR microcontrollers are:-

o ATmega8 microcontroller

o ATmega16 microcontroller

o ATmega32 microcontroller

o ATmega328 microcontroller

ATmega32-8 Bit AVR MicroController

The AVR microController is based on the advanced Reduced Instruction Set Computer (RISC) architecture. ATmega32
microController is a low power CMOS technology based controller. Due to RISC architecture AVR microcontroller can execute
1 million of instructions per second if cycle frequency is 1 MHz provided by crystal oscillator.

Key Features:

Consider some general features of ATmega32 microcontroller is:-

o 2 Kilo bytes of internal Static RAM

o 32 X 8 general working purpose registers

o 32 Kilo bytes of in system self programmable flash program memory.

o 1024 bytes EEPROM

o Programmable serial USART

o 8 Channel, 10 bit ADC

o One 16-bit timer/counter with separate prescaler, compare mode and capture mode.

o Available in 40 pin DIP, 44-pad QFN/MLF and 44-lead QTFP

o Two 8-bit timers/counters with separate prescalers and compare modes

o 32 programmable I/O lines

o In system programming by on-chip boot program

o Master/slave SPI serial interface

o 4 PWM channels

o Programmable watch dog timer with separate on-chip oscillator

Special Microcontroller Features:
o External and internal interrupt sources

o Six sleep modes: Idle, ADC noise reduction, power-save, power-down, standby and extended standby.

o Power on reset and programmable brown-out detection.

o Internal calibrated RC oscillator

ATmega32 Microcontroller Pin Diagram

For explaining the ATmega32 Microcontroller Pin diagram, consider a 40-pin Dual Inline Package (DIP) of microcontroller
integrated circuit is:

Pin Descriptions:

Port A (PA7-PA0): Port A serves as analog inputs for A/D converter. It also acts as an 8-bit bidirectional I/O port if the A/D
converter is not used internally.

Port B (PB7-PB0) and Port D (PD7-PD0): These ports are 8-bit bidirectional I/O ports. Their output buffers have symmetrical
drive characteristics with high source and sink capability. As inputs, these are pulled low if the pull-up resistors are used. It
also provides various special functional features of the ATmega32.

Port C (PC7-PC0): Port C is an 8-bit bidirectional I/O port. If the Joint Test Action Group (JTAG) interface is enabled, the pull -
up resistors on pins PC2 (TCK), PC3 (TMS), and PC5 (TDI) will be activated.

Consider the interfacing of Joint Test Action Group (JTAG) using Port C of ATmega32 is:-

Vcc: Digital voltage supply

GND: Ground

RESET: It is a RESET pin which is utilized to set the microcontroller ATmega32 to its primary value. During the beginning of
an application the RESET pin is to be set elevated for two machine rotations.

XTAL1: It is an input for the inverting oscillator amplifier and input to an internal clock operating circuit.

XTAL2: It is an output from an inverting oscillator amplifier.

AVcc: It is a supply voltage pin for A/D converter and Port A. It must be connected with Vcc.

AREF: AREF is an analog signal reference pin for the analog to digital converter.

ATmega32 Memories

In ATmega32 microcontroller two main memory spaces i.e. the program memory and data memory space are used. In addition
it uses an EEPROM memory for data storage.

In System Programmable Flash Program Memory:

ATmega32 microcontroller contains 32Kb of on-chip in system programmable flash memory for program storage. Flash
memory is organized as 16K X 16K structure and its memory is divided into two sections application program section and
boot program section.

Consider the ISP programmer circuit diagram is:

SRAM Data Memory:

The Register file, the internal data SRAM and I/O memory are addressed by the lower 2144 data memory locations. The first
96 locations address the I/O memory and Register file, and the internal data Static RAM is addressed by the next 2048
locations.

Consider the five different addressing modes for the data memory is:-

o Direct addressing modes

o Indirect addressing modes

o Indirect with displacement addressing modes

o Indirect with pre-decrement addressing modes

o Indirect with post-decrement addressing modes

SRAM data memory have 32 general purpose registers, 2048 bytes of internal data SRAM, and 64 I/O registers are accessible
by using the above addressing modes.

Consider the SRAM data memory structure shown in block diagram of ATmega32 is:

EEPROM Data Memory:

ATmega32 contains 1024 bytes of data EEPROM memory. It can be used as a separate data space in which single bytes can
be read and written.

ATmega8 Microcontroller

It is an 8 bit CMOS technology based microcontroller belongs to the AVR family of microcontroller developed in 1996. It is
built on RISC (Reduced Instruction Set Computer) architecture. Their main advantage is it doesn?t contain any accumulator
register and the result of any operation can be stored inside any register, defined by an instruction.

ATmega8 Architecture:

Consider the block diagram representation of internal architecture configuration of ATmega8 microcontroller is:

Memory:

ATmega8 microcontroller consists of 1KB of SRAM, 8KB of flash memory and 512 bytes of EEPROM.

The 8KB flash memory is divided into two parts:-

o The upper part used as application flash section

o The lower part used as boot flash section

In ATmega8 microcontroller all the registers are connected directly with Arithmetic Logic Unit (ALU). The EEPROM memory is
used for storing the user defined data.

Input/output ports:

ATmega8 microcontroller consists of 3 I/O ports, named as B, C and D with a combination of 23 I/O lines. Port D consists of
8 I/O lines, Port C consists of 7 I/O lines, and Port B consists of 8 I/O lines.

Registers corresponding to the Input/output port X (B, C or D) are:

o DDRX: Data Direction Register of Port X

o PORTX: Data register of Port X

o PINX: Input register of Port X

ATmega8 Pin Diagram

One of the most important features of ATmega8 microcontroller is that except 5 pins, all other pins can be used for supporting
two signals.

o Pins 9,10,14,15,16,17,18,19 are used for port B, Whereas Pins 23,24,25,26,27,28 and 1 are used for port C and Pins 2,3,4,5,6,11,12 are used

for port D.

o Pin 1 is used as Reset pin and on applying low level signal for time longer than minimum pulse length will generate a reset signal.

o Pins 3 and 2 can also be used in serial communication for USART (Universal Synchronous and Asynchronous Receiver Transmitter).

o Pin 5 and 4 are used as external interrupts.

o Pins 10 and 9 are used as timer counter oscillators as well as external oscillator where the crystal is connected directly between the pins.

o Pin 19 is used as slave clock input or master clock output for Serial Peripheral Interface (SPI) channel.

o Pin 18 is used as slave clock output or master clock input

o Pins 23 to 28 are used for analog to digital conversion (ADC) channels.

o Pin 12 and 13 are used as Analog Comparator inputs.

o Pins 6 and 11 are used as counter/timer sources.

ATmega8 Microcontroller Sleep Modes:

The Microcontroller operates in 5 sleep modes as given below:

o Power save Mode: It is used when Counter/Timer is clocked asynchronously. In general this mode used for saving the operational power
requirement of microcontroller.

o Idle Mode: It stops the functioning of CPU, but allows operation of ADC, TWI, SPI, and interrupts system and Watchdog. It is achieved

by setting SM0 to SM2 bits of Microcontroller Unit register flag at zero.

o Power down Mode: It enables external interrupts, the 2-wire serial interface, and watchdog while disabling the external oscillator. It
stops all generated clocks.

o ADC Noise Reduction Mode: It stops the central processing unit but allows the functioning of ADC, timer/counter and external

interrupts.

o Stand By mode: In this mode, only oscillator is allowed to operate by slowing all other operation of microcontroller.

AVR I/O Port Programming

In AVR microcontroller family, there are many ports available for I/O operations, depending on which family microcontroller
you choose. For the ATmega32 40-pin chip 32 Pins are available for I/O operation. The four ports PORTA, PORTB, PORTC, and
PORTD are programmed for performing desired operation.

The Pin diagram of ATmega32 microcontroller is shown below:

The number of ports in AVR family varies depending on number of pins available on chip. The 8-pin AVR has port B only,
while the 64-pin version has ports A to ports F, and the 100-pin AVR has ports A to ports L.

The table showing Numbers of ports in some AVR family members is shown below:

Note: X indicates that the port is available.

The 40-pin AVR has four ports for using any of the ports as an input or output port, it must be accordingly programmed. In
AVR microcontroller not all ports have 8 pins. For example:-in the ATmega8, Port C has 7 pins.

The Registers Addresses for ATmega32 Ports is given below:

Each port in AVR microcontroller has three I/O registers associated with it. They are designated as PORTx, DDRx and PINx.
For example: - in case of Port B we have PORTB, DDRB, and PINB. Here DDR stands for Data Direction Registers, and PIN
stands for Port Input pins.

Each of I/O registers is 8 bits wide, and each port has a maximum of 8 pins, therefore each bit of I/O registers affects one of
the pins.

For accessing I/O registers associated with the ports the common relationship between the registers and the pins of AVR
microcontroller is used.

The relation between the Registers and the Pins of AVR is shown below:

AVR Registers

AVR is 8 bit microcontroller therefore all its ports are 8 bit wide. Every port has 3 registers associated with it each one have
size of 8 bits. Every bit in those registers configures the pins of particular port. Bit0 of these registers are associated with Pin0
of the port, Bit1 of these registers are associated with Pin1 of the port, and same as for other bits.

The three registers available in AVR microcontroller are as follows:

o DDRx register

o PORTx register

o PINx register

DDRx register:

Data Direction Register configures the data direction of port pins. These registers are used for determining whether port pins
will be used for input or output. On writing 1 to a bit in DDRx makes corresponding port pin as output, while writing 0 to a
bit in DDRx makes corresponding port pin as input.

For example:

o For making all pins of port A as output pins:

1. DDRA= 0b11111111;

o For making all pins of port A as input pins:

1. DDRA= 0b00000000;

o For making lower nibble of port B as output and higher nibble as input:

1. DDRB=0b00001111;

PINx register:

PINx register used to read the data from port pins. In order to read the data from port pin, first we have to change the port?s
data direction to input. This is done by setting bits in DDRx to zero. If port is made output, then reading PINx register will give
a data that has been output on port pins.

There are two input modes. Either we can use port pins as internal pull up or as tri stated inputs. It will be explained as shown
below:

For reading the data from port A,

1. DDRA = 0x00; //Set port A as input

2. x = PINA; //Read contents of port a

PORTx register:

In general PORTx register can be used for two purposes:

o To output data: when port is configured as output then PORTx register is used. When we set bits in DDRx to 1, corresponding pins

becomes output pins. Now we can write the data into respective bits in PORTx register. This will immediately change the output state of

pins according to data we have written on the ports.For example:

To output data in variable x on port A

1. DDRA = 0xFF; //make port A as outputs

2. PORTA = x; //output variable on port

To output 0xFF data on port B

1. DDRB = 0b11111111; //set all the pins of port B as outputs

2. PORTB = 0xFF; //write the data on port

To output data on only 0th bit of port C

1. DDRC.0 = 1; //set only 0th pin of port C as an output

2. PORTC.0 = 1; //make it high signal.

o To activate/deactivate pull up resistors: when port is configured as input we set the bits in DDRx to 0, i.e. make port pins as inputs the

corresponding bits in PORTx registers used to activate/deactivate pull-up registers associated with that pin. In order for activating pull-

up resistor, set the bit in PORTx register to 1, and for deactivating (i.e. to make port as tri stated) set it to zero.

In input mode, when pull-up is enabled, default state of the pin is '1'. So if we don't add anything to pin and if we try to read
it then it will read as 1.

Note: While using on chip Analog to Digital Converter (ADC), ADC port pins must be used as tri stated input.

For example:

To make lower nibble of port A as output, higher nibble as input with pull-ups enabled

1. DDRA = 0x0F; // higher nib> input, lower nib> output

2. PORTA = 0xF0; //lower nib> set output pins to 0

To make port B as tri stated input

1. DDRB = 0x00; //use port B as input

2. PORTB = 0x00; //Disable pull-ups register and make it tri state

To make port C as input with pull-ups enabled and read data from port a

1. DDRC = 0x00; //make port C as input

2. PORTC = 0xFF; //enable all pull-ups

3. y = PINC; //read data from port C pins

External Interrupts in AVR Microcontroller

Microcontrollers can accept inputs from I/O ports, interrupts are used for accepting inputs generated by external events.
Interrupt event directs the flow of program execution with a totally independent piece of code, known as "Interrupt Sub-
Routine". There are many sources of interrupts that are available for a microcontroller. Most of them are generated by internal
modules and are called as internal interrupts.

For running an interrupt subroutine following requirements are necessary:

o The interrupt source must be activated by setting the corresponding interrupt mask/ Interrupt Enable Bit.

o The enable bit in AVR status register must be set to 1. For this the instruction named 'sei' (Set Interrupt Enable).

o The interrupt sub routine must present. If there is no code to b e run, then an empty subroutine must occur at particular memory spaced

to that interrupt.

o Finally the event must occur, so the execution of the routine gets triggered.

w

 Writing an Interrupt Subroutine in AVR Studio:

It is tricky to use an interrupt subroutine into a C code of a microcontroller. Therefore the AVR GCC developers use a fe
symbols to represent the interrupts and macros that minimized the code size in many programs.

The interrupt subroutine for External Interrupt 0 and External Interrupt 1 is given below:

1. // Interrupt sub routine code starts
2. ISR(INT1_vect)

3. {

4. // Code for interrupt 1

5. }

6. ISR(INT0_vect)

7. {

8. // Code for interrupt 0

9. }

10. // Interrupt Subroutine Code Ends

Registers Associated with External Interrupts:

The table showing microcontroller unit control register is given below:

MCU Control Register- MCUCR

 Bit 7 6 5 4 3 2 1 0

 Bit Name SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00

Initial value 0 0 0 0 0 0 0 0

 Read/Write RW RW RW RW RW RW RW RW

The table showing Interrupt Sense Control truth table is:

ISCx1 ISCx0 Interrupt Generated Upon

 0 0 The lower Level of INTx pin

 0 1 Any logical change inside INTx pin

 1 0 Falling edge of INTx pin

 1 1 Rising edge of INTx pin

USART in AVR ATmega16/ATmega32

Introduction

AVR ATmega has flexible USART, which can be used for serial communication with other devices like computers, serial

GSM, GPS modules, etc.

Before beginning with AVR USART, we will walk through the basics of serial communication.

Serial data framing

While sending/receiving data, some bits are added for the purpose of knowing the beginning/ending of data, etc. commonly

used structure is: 8 data bits, 1 start bit (logic 0), and 1 stop bit (logic 1), as shown:

There are also other supported frame formats available in UART, like parity bit, variable data bits (5-9 data bits).

Speed (Baud rate)

As we know the bit rate is “Number of bits per second (bps)”, also known as Baud rate in Binary system. Normally this

defines how fast the serial line is. There are some standard baud rates defined e.g. 1200, 2400, 4800, 19200, 115200 bps,

etc. Normally 9600 bps is used where speed is not a critical issue.

Wires and Hardware connection

Normally in USART, we only need Tx (Transmit), Rx(Receive), and GND wires.

 AVR ATmega USART has a TTL voltage level which is 0 v for logic 0 and 5 v for logic 1.

 In computers and most of the old devices, RS232 protocol is used for serial communication, where normally 9 pin ‘D’ shape connector

is used. RS232 serial communication has different voltage levels than ATmega serial communication i.e. +3 v to +25 v for logic zero

and -3 v to -25 v for logic 1.

 So to communicate with RS232 protocol, we need to use a voltage level converter like MAX232 IC.

Although there are 9 pins in the DB9 connector, we don’t need to use all the pins. Only 2nd Tx(Transmit), 3rd Rx(Receive),

and 5th GND pin need to be connected.

ATmega16/32 Serial Interface Connection Diagram

With a new PC and laptops, there is no RS232 protocol and DB9 connector. We have to use serial to the USB connector.

There are various serial to USB connectors available e.g. CP2102, FT232RL, CH340, etc.

 Double Speed Asynchronous Communication Mode

Programming of USART in AVR

To program, first, we need to understand the basic registers used for USART

AVR basic Registers

1. UDR: USART Data Register

It has basically two registers, one is Tx. Byte and the other is Rx Byte. Both share the same UDR register. Do remember

that, when we write to the UDR reg. Tx buffer will get written and when we read from this register, Rx Buffer will get read.

Buffer uses the FIFO shift register to transmit the data.

2. UCSRA: USART Control and Status Register A. As the name suggests, is used for control and status flags. In a

similar fashion, there are two more USART control and status registers, namely UCSRB and UCSRC.

3. UBRR: USART Baud Rate Register, this is a 16-bit register used for the setting baud rate.

We will see this register in detail:

UCSRA: USART Control and Status Register A

 Bit 7 – RXC: USART Receive Complete

This flag bit is set when there is unread data in UDR. The RXC Flag can be used to generate a Receive Complete interrupt.

 Bit 6 – TXC: USART Transmit Complete

This flag bit is set when the entire frame from Tx Buffer is shifted out and there is no new data currently present in the

transmit buffer (UDR). The TXC Flag bit is automatically cleared when a transmit complete interrupt is executed, or it can

be cleared by writing a one to its bit location. The TXC Flag can generate a Transmit Complete interrupt.

 Bit 5 – UDRE: USART Data Register Empty

If UDRE is one, the buffer is empty which indicates the transmit buffer (UDR) is ready to receive new data. The UDRE Flag

can generate a Data Register Empty Interrupt. UDRE is set after a reset to indicate that the transmitter is ready.

 Bit 4 – FE: Frame Error

 Bit 3 – DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is full (two

characters) and a new character is waiting in the receive Shift Register.

 Bit 2 – PE: Parity Error

 Bit 1 – U2X: Double the USART Transmission Speed

 Bit 0 – MPCM: Multi-processor Communication Mode

UCSRB: USART Control and Status Register B

 Bit 7 – RXCIE: RX Complete Interrupt Enable

Writing one to this bit enables interrupt on the RXC Flag.

 Bit 6 – TXCIE: TX Complete Interrupt Enable

Writing one to this bit enables interrupt on the TXC Flag.

 Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable

Writing one to this bit enables interrupt on the UDRE Flag.

 Bit 4 – RXEN: Receiver Enable

Writing one to this bit enables the USART Receiver.

 Bit 3 – TXEN: Transmitter Enable

Writing one to this bit enables the USART Transmitter.

 Bit 2 – UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size) in a frame the

receiver and transmitter use.

 Bit 1 – RXB8: Receive Data Bit 8

 Bit 0 – TXB8: Transmit Data Bit 8

UCSRC: USART Control and Status Register C

Bit 7 – URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register, as both register shares the same address. The

This bit selects the number of Stop Bits to be inserted by the Transmitter. The Receiver ignores this setting.

 URSEL must be one when writing the UCSRC or else data will be written in the UBRRH register.

 Bit 6 – UMSEL: USART Mode Select

This bit selects between the Asynchronous and Synchronous mode of operation.

0 = Asynchronous Operation

1 = Synchronous Operation

 Bit 5:4 – UPM1:0: Parity Mode

These bits enable and set the type of parity generation and check. If parity a mismatch is detected, the PE Flag in

UCSRA will be set.

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

 Bit 3 – USBS: Stop Bit Select

0 = 1-bit

1 = 2-bit

 Bit 2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits (Character Size) in a frame the

Receiver and Transmitter use.

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

 Bit 0 – UCPOL: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when the asynchronous mode is used.

UBRRL and UBRRH: USART Baud Rate Registers

Bit 15 – URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register, as both register shares the same address. The

URSEL must be one when writing the UCSRC or else data will be written in the UBRRH register.

 Bit 11:0 – UBRR11:0: USART Baud Rate Register.

Used to define the baud rate

Example: suppose Fosc=8 MHz and required baud rate= 9600 bps.

Then the value of UBRR= 51.088 i.e. 51.

We can also set this value by c code using pre-processor macro as follow.

 #define F_CPU 8000000UL /* Define frequency here its 8MHz */

#define USART_BAUDRATE 9600

#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

BAUD_PRESCALE is the value that we have to load in the UBRR register to set the defined baud rate.

Timer in AVR ATmega16/ATmega32

Introduction

Generally, we use a timer/counter to generate time delays, waveforms, or to count events. Also, the timer is used for PWM

generation, capturing events, etc.

In AVR ATmega16 / ATmega32, there are three timers:

 Timer0: 8-bit timer

 Timer1: 16-bit timer

 Timer2: 8-bit timer

Basic registers and flags of the Timers

TCNTn: Timer / Counter Register

Every timer has a timer/counter register. It is zero upon reset. We can access value or write a value to this register.

It counts up with each clock pulse.

TOVn: Timer Overflow Flag

Each timer has a Timer Overflow flag. When the timer overflows, this flag will get set.

TCCRn: Timer Counter Control Register

This register is used for setting the modes of timer/counter.

OCRn: Output Compare Register

The value in this register is compared with the content of the TCNTn register. When they are equal, the OCFn flag

will get set.

Let us see Timer0 to understand the timers in ATmega16 / ATmega32

Timer0

First, we need to understand the basic registers of the Timer0

1. TCNT0: Timer / Counter Register 0

if

These bits control the waveform generator. We will see this in the compare mode of the timer.

It is an 8-bit register. It counts up with each pulse.

2. TCCR0: Timer / Counter Control register 0

This is an 8-bit register used for the operation mode and the clock source selection.

Bit 7- FOC0: Force compare match

Write only a bit, which can be used while generating a wave. Writing 1 to this bit causes the wave generator to act as

a compare match has occurred.

Bit 6, 3 - WGM00, WGM01: Waveform Generation Mode

WGM00 WGM01 Timer0 mode selection bit

0 0 Normal

0 1 CTC (Clear timer on Compare Match)

1 0 PWM, Phase correct

1 1 Fast PWM

Bit 5:4 - COM01:00: Compare Output Mode

Bit 2:0 - CS02:CS00: Clock Source Select

These bits are used to select a clock source. When CS02: CS00 = 000, then timer is stopped. As it gets a value

between 001 to 101, it gets a clock source and starts as the timer.

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer / Counter stopped)

0 0 1 clk (no pre-scaling)

0 1 0 clk / 8

0 1 1 clk / 64

1 0 0 clk / 256

1 0 1 clk / 1024

1

1

0

External clock source on T0 pin. Clock on falling

edge

1

1

1

External clock source on T0 pin. Clock on rising

edge.

3. TIFR: Timer Counter Interrupt Flag register

Bit 0 - TOV0: Timer0 Overflow flag

0 = Timer0 did not overflow

1 = Timer0 has overflown (going from 0xFF to 0x00)

Bit 1 - OCF0: Timer0 Output Compare flag

0 = Compare match did not occur

1 = Compare match occurred

Bit 2 - TOV1: Timer1 Overflow flag

Bit 3 - OCF1B: Timer1 Output Compare B match flag

Bit 4 - OCF1A: Timer1 Output Compare A match flag

Bit 5 - ICF1: Input Capture flag

Bit 6 - TOV2: Timer2 Overflow flag

Bit 7 - OCF2: Timer2 Output Compare match flag

Timer0 Overflow

Normal mode: When the counter overflows i.e. goes from 0xFF to 0x00, the TOV0 flag is set.

Creating Delay Using Timer0

Steps to Program Delay using Timer0

1. Load the TCNT0 register with the initial value (let’s take 0x25).

2. For normal mode and the pre-scaler option of the clock, set the value in the TCCR0 register. As soon as the clock

Prescaler value gets selected, the timer/counter starts to count, and each clock tick causes the value of the timer/counter to

increment by 1.

3. Timer keeps counting up, so keep monitoring for timer overflow i.e. TOV0 (Timer0 Overflow) flag to see if it is raised.

4. Stop the timer by putting 0 in the TCCR0 i.e. the clock source will get disconnected and the timer/counter will get

stopped.

5. Clear the TOV0 flag. Note that we have to write 1 to the TOV0 bit to clear the flag.

6. Return to the main function.

The time delay generated by above code

As Fosc = 8 MHz

T = 1 / Fosc = 0.125 μs

Therefore, the count increments by every 0.125 μs.

In above code, the number of cycles required to roll over are:

0xFF - 0x25= 0xDA i.e. decimal 218

Add one more cycle as it takes to roll over and raise TOV0 flag: 219

Total Delay = 219 x 0.125 μs = 27.375 μs

Example

Let us generate a square waveform having 10 ms high and 10 ms low time:

First, we have to create a delay of 10 ms using timer0.

*Fosc = 8 MHz

Use the pre-scalar 1024, so the timer clock source frequency will be,

8 MHz / 1024 = 7812.5 Hz

Time of 1 cycle = 1 / 7812.5 = 128 μs

Therefore, for a delay of 10 ms, number of cycles required will be,

10 ms / 128 μs = 78 (approx)

We need 78 timer cycles to generate a delay of 10 ms. Put the value in TCNT0 accordingly.

Value to load in TCNT0 = 256 – 78 (78 clock ticks to overflow the timer)

= 178 i.e. 0xB2 in hex

Thus, if we load 0xB2 in the TCNT0 register, the timer will overflow after 78 cycles i.e. precisely after a delay of 10 ms.

*Note - All calculations are done by considering 8 MHz CPU frequency. If you are using another value of CPU frequency,

modify the calculations accordingly; otherwise, the delay will mismatch.

Timer Interrupt

TIMSK: Timer / Counter Interrupt Mask Register

We have to set the TOIE0 (Timer0 Overflow Interrupt Enable) bit in the TIMSK register to set the timer0 interrupt so that as

soon as the Timer0 overflows, the controller jumps to the Timer0 interrupt routine.

 UNIT-4 ARM PROCESSOR

• ARM is Advanced RISC Machine, earlier known as Acorn RISC Machine.

• It was built by Acorn Computers along with VLSI technology in 1990/11.

• ARM is a 32-bit microprocessor with RISC (Reduced Instruction Set Computer) architecture.

• RISC processors are designed to perform a smaller number of computer instructions so that they can operate

at a higher speed, performing more millions of instructions per second (MIPS) as compared to CISC (Complex
instruction set Computer) processors.

• ARM is one of the most licensed and thus widespread processor cores in the world.

• Used especially in portable devices due to low power consumption and reasonable performance (MIPS/watt).

• ARM does not manufacture its own VLSI devices. It licenses out its core to many companies such as TI, Philips,

Intel etc.

• Because of their reduced instruction set, they require fewer transistors, which enables a smaller die size for
the integrated circuitry (IC).

• The ARM processor’s smaller size, reduced complexity and lower power consumption makes them suitable for
increasingly miniaturized devices.

• ARM7 and older versions support Von Neumann
Architecture.

• ARM9 and newer versions support Harvard
Architecture.

• In Von Neumann implementation data items and instructions share same bus.

• In Harvard implementation two different buses -ARM high bus (AHB) and ARM Peripheral Bus (APB), are used

for data and instructions.
ARM DATA FLOW MODEL

Functional units are connected by Data Buses

The arrow represent the flow of data and lines represent the buses

The boxes represent the either an operation unit or storage area

The figure also shows abstract components that make ARM processor

Von Neumann
Implementation

• The instruction decoder translates
instructions

• Data items are placed in the register file

§A storage bank made up of 32-bit registers
§Most instructions treat the registers as holding signed or unsigned 32-bit values

§The sign extend hardware converts signed 8-bit and
16-bit numbers into 32-bit values

• ARM instructions typically have two source registers, Rn and Rm, and a single result or destination register, Rd
§Source operands are read from the register file using the internal bus

ØThe ARM Processor like all processor uses a Load-store architecture
Ø Load instruction: copy data from memory to register
ØStore instruction: copy data from register to memory

ØThere are no data processing instructions that directly manipulate data in memory.
ØALU and MAC (Multiply-accumulate) unit takes the register values Rn and Rm from A and B buses and computes a
result.

ØLoad and store instructions use the ALU to generate an address to be held in the address register and broadcast on
the Address bus.

ØThe register Rm can be alternatively pre-processed in the barrel shifter before it enters the ALU.

ØFor load and store instructions the incrementer updates the address register before the core reads or writes the
next register value from or to the next sequential memory location.

Registers

–

● General purpose registers hold either data or an address.

● All registers are 32-bit in size.

● 18 active registers

● 16 data registers – r0 to r15

● 2 process status registers

– CPSR – Current Program Status Register SPSR – Saved Program Status Register

.
● r13, r14, r15 have special functions

● R13 – stack pointer (sp) and stores the head of the stack in the current processor
mode

● R14 – link register (lr) where the core puts the return address whenever it calls a
subroutine.

● R15 – programme counter (pc) and contains the address of the next instruction to be
fetched by the processor. ● r13 and r14 can also be used as general purpose register as
these registers are banked during a processor mode change.

● The registers r0 to r13 are orthogonal. Any instruction that you can apply to r0, you can equally apply to other
registers. ● There are instructions that treat r14 and r15 in a special way

Current Program Status Register
(CPSR)

● ARM core uses CPSR to monitor and control internal operations.

● CPSR is a dedicated 32-bit register and resides in the register file.

● CPSR is divided into four fields each 8-bits wide:

● Flags – holding instruction conditions

● Status – reserved for future use

● Extension - reserved for future use

● Control – indicate processor mode, state and interrupt mask bits

CPSR

State & Instruction Sets
● The state of the core determines which instruction set is being executed.
● There are three instruction sets

● ARM: Active in ARM state
● Thumb: Active in Thumb state ● Jazelle: Active in Jazelle state

• The Jazelle (J) and Thumb (T) bits in the cpsr reflect the state of the processor.
• Jazelle instruction set is a closed set and is not openly available.

• When both J and T bits are 0, the processor is in ARM state and executes ARM instructions.

• ARM has introduced a set of extensions to the ARM architecture that will allow an ARM processor to directly

execute Java byte code alongside exiting operating systems, middleware and application code.

• To execute Java bytecodes, the Jazelle technology is required and a modified version of the Java virtual machine.
– the hardware portion of Jazelle only supports a subset of the Java bytecodes and rest are emulated in

software
State & Instruction Set Features

Instruction Size

32-bit 16-bit 8-bit

Core
58 30

Over 60% of Java : H/W

 instructions The rest : S/W

cpsr T=0
J=0

T=1
J=0

T=0, J=1

Interrupt Masks

● Interrupt masks are used to stop specific interrupt requests from interrupting the processor.

● Two types of interrupt request

● Interrupt Request (IRQ)
● Fast interrupt request (FIQ)
● The I bit in the cpsr masks IRQ when set to binary 1

● The F bit in the cpsr masks FIQ when set to binary 1
Condition Flags

• Condition flags are updated by comparison and the result of
ALU operations that specify the S instruction suffix

– If a SUBS subtract instruction results in a register value of zero, then the Z flag in the cpsr is set

• Condition flags

– N : Negative result from ALU

– Z : Zero result from ALU

– C : ALU operation Carried out

– V : ALU operation overflowed

– Q : Overflow & Saturation : In processors with DSP extensions, the Q bit indicates overflow or
saturation that has occcured in an enhanced DSP instruction.

Processor Modes

● The processor mode determines which registers are active and the access rights to the CPSR register itself.

● Each processor mode is either privileged or nonprivileged.

● A privileged mode allows full read-write access to CPSR.

● A non-privileged mode only allows read access to the control field in the CPSR but still allows R/W access
to the condition flags.

Processor Modes

Banked Registers

• ARM has 37 registers in the register file.

• Of those, 20 registers are hidden from a program at different times. These registers are called banked registers
(shown as shaded region).

• They are available only when the processor is in a particular mode.

• Every processor mode except user mode can change mode by writing directly to the mode bits of the CPSR.

• All modes except system mode have a set of associated banked registers that are a subset of the main 16 registers.
• A banked register maps one-to-one onto a user mode register.

• If you change processor mode, a banked register from the new mode will replace an existing register.

• There is no spsr available in the user mode.

Banked Registers Contd ...

Changing Processor Mode

• The processor mode can be changed

– by a program that writes directly to CPSR (the processor has to
be in privileged mode) or

– by hardware whencore responds to an exception or interrupt.

• Following exceptions and interrupts cause a mode change:

– Reset

– Interrupt Request

– Fast interrupt request

– Software interrupt

– Data abort

– Prefetch abort

– Undefined instruction

• Exception and interrupt suspend the normal execution of sequential
instructions and jump to a specific location.

• The processor mode changes form user mode to interrupt mode when an
interrupt request occurs due to an external device raising an interrupt to
the process core.

● This change causes user

● registers r13 and r14 to be banked.They are replaced with registers r13_irq and
r14_irq respectively.

● r13_irq contains the stack pointer for the interrupt request mode.

● r14_irq contains the return address.

● The cpsr is copied to spsr_irq.
● To return back to the user mode, a special return instruction is used that

instructs the core to restore the original cpsr from spsr_irq and bank in the user
registers r13 and r14.

● The register spsr can only be modified in a privileged mode. There is no spsr

available in the user mode.

● Note that cpsr is not copied into the spsr when a mode change is forced due to
a program writing directly to the cpsr. The saving of cpsr only occurs when an
exception or interrupt is raised.

Mode bits & Vector Table

Exception Vector Table

• The exception vector table consists of designated addresses in external
memory that hold information to handle an exception, an interrupt or a
typical event (e.g. reset).

• For example, when an interrupt request comes along, the processor will
change the program counter to 0x18 and begin fetching instructions
from there.

• One can put a branch instruction at this location so that the processor
can jump to the interrupt handler located at some other location in the
memory.

• On reset, the core jumps to address 0x0 and starts fetching instruction.
We either need to provide a reset exception handler (initialization
routine) or we can begin coding at this address.

Pipeline Concept
• The mechanism a RISC processor uses to execute instructions in parallel

to speed up execution.

• As the pipeline length increases, the amount of work done at each stage

is reduced, which allows the processor attain a higher operating
frequency

– This in turn increases the performance

– This also increases the latency

• The ARM9 adds a memory and writeback stage
– 1.1 Dhrystone MIPS per MHz

– Increase in instruction throughput by around 13% compared with
an ARM7

The ARM10 adds an issue stage

– 1.3 Dhrystone MIPS per MHz

– 34% more throughput than an ARM7

• ARM9 and ARM10 use the same pipeline executing characteristics as an
ARM7
– Code written for the ARM7 will execute on an ARM9 or ARM10

UNIT-5

AI IN ROBOTICS

AI IN ROBOTICS: Robotic perception, localization, mapping- configuring space, planning
uncertain movements, dynamics and control of movement, Ethics and risks of artificial
intelligence in robotics.

 Robotic perception

Perception is the process by which robots map sensor measurements into internal
representations of the environment. Perception is difficult because sensors are noisy, and the
environment is partially observable, unpredictable, and often dynamic. In other words, robots
have all the problems of state estimation.As a rule of thumb, good internal representations for
robots have three properties:

 they contain enough information for the robot to make good decisions,
 they are structured so that they can be updated efficiently, and
 they are natural in the sense that internal variables correspond to natural state

variables in the physical world

Active perception

The most well-known instance of active perception is active vision. The term “active vision”
is essentially synonymous with moving cameras. Active vision work on Cog is oriented
towards opening up the potentially rich area of manipulation-aided vision, which is still largely
unexplored. But there is much to be gained by taking advantage of the fact that robots are actors
in their environment, not simply passive observers. They have the opportunity to examine the
world using causality, by performing probing actions and learning from the response. In
conjunction with a developmental framework, this could allow the robot’s experience to
expand outward from its sensors into its environment, from its own arm to the objects it
encounters, and from those objects both back to the robot itself and outwards to other actors
that encounter those same objects.

Developmental perception

The robot could reliably segment objects from the background (even if it is similar in
appearance) by poking them. It can determine the shape of an object boundary in this special
situation, even though it cannot do this normally. This is precisely the kind of situation that a
developmental framework could exploit. Particular, familiar situations allow the robot to
perceive something about objects and actors (such as a human or the robot itself) that could not
be perceived outside those situations. These objects and actors can be tracked into other, less
familiar situations, which can then be characterized and used for further discovery. Throughout,
existing perceptual capabilities (“primitive features”) can be refined as opportunities arise.

Interpersonal perception

Perception is not a completely objective process; there are choices to be made. For example,
whether two objects are judged to be the same depends on which of their many features are
considered essential and which are considered incidental. For a robot to be useful, it should
draw the same distinctions a human would for a given task. To achieve this, there must be
mechanisms that allow the robot’s perceptual judgments to be channeled and moulded by a
caregiver. This is also useful in situations where the robot’s own abilities are simply not up to
the challenge, and need a helping hand.

Robotics and Artificial Intelligence

Robotics is a separate entity in Artificial Intelligence that helps study the creation of intelligent
robots or machines. Robotics combines electrical engineering, mechanical engineering and
computer science & engineering as they have mechanical construction, electrical component
and programmed with programming language. Although, Robotics and Artificial Intelligence
both have different objectives and applications, but most people treat robotics as a subset of
Artificial Intelligence (AI). Robot machines look very similar to humans, and also, they can
perform like humans, if enabled with AI.

What are Artificially Intelligent Robots?

Artificial intelligent robots connect AI with robotics. AI robots are controlled by AI programs
and use different AI technologies, such as Machine learning, computer vision, RL learning,
etc. Usually, most robots are not AI robots, these robots are programmed to perform repetitive
series of movements, and they don't need any AI to perform their task. However, these robots
are limited in functionality.

AI algorithms are necessary when you want to allow the robot to perform more complex tasks.

What are the advantages of integrating Artificial Intelligence into robotics?

o The major advantages of artificially intelligent robots are social care. They can guide

people, especially come to aid for older people, with chatbot like social skills and

advanced processors.

o Robotics also helps in Agricultural industry with the help of developing AI based

robots. These robots reduce the farmer's workload.

o In Military industry, Military bots can spy through speech and vision detectors, along

with saving lives by replacing infantry

o Robotics also employed in volcanoes, deep oceans, extremely cold places, or even in

space where normally humans can't survive.

o Robotics is also used in medical and healthcare industry as it can also perform complex

surgeries that have a higher risk of a mistake by humans, but with a pre-set of

instructions and added Intelligence. AI integrated robotics could reduce the number of

casualties greatly.

Difference in Robot System and AI Programs

Here is the difference between Artificial Intelligence and Robots:

1. AI Programs

Usually, we use to operate them in computer-simulated worlds.

Generally, input is given in the form of symbols and rules.

To operate this, we need general-purpose/Special-purpose computers.

2. Robots

Generally, we use robots to operate in the real physical world.

Inputs are given in the form of the analogue signal or in the form of the speech waveform.

Also, to operate this, special hardware with sensors and effectors are needed

Localization and mapping

Localization is the problem of finding out where things are—including the robot itself.
Knowledge about where things are is at the core of any successful physical interaction
with the environment. For example, robot manipulators must know the location of
objects they seek to manipulate; navigating robots must know where they are to find
their way around.

In some situations, no map of the environment is available. Then the robot will have
to acquire a map. This is a bit of a chicken-and-egg problem: the navigating robot
will have to determine its location relative to a map it doesn’t quite know, at the same
time building this map while it doesn’t quite know its actual location. This problem is

important for many robot applications, and it has been studied extensively under the
name simultaneous localization and mapping, abbreviated as SLAM.

Simultaneous Localization and Mapping

SLAM is the estimation of the pose of a robot and the map of the environment
simultaneously. SLAM is hard because a map is needed for localization and a good pose
estimate is needed for mapping

 Localization: inferring location given a map.
 Mapping: inferring a map given locations.
 SLAM: learning a map and locating the robot simultaneously.
SLAM problem is hard because it is kind of a paradox i.e :

 In order to build a map, we need now the position.
 To determine our position, we need a map.
It is like a chicken-egg problem.

SLAM has multiple parts and each part can be executed in many different ways:

 Landmark detection
 Data association
 State Estimation
 State Update
 Landmark Update

SLAM step by step

SLAM step 1 >SLAM step 2

SLAM step 3 SLAM step 4

 SLAM process consists of the following steps:
 In the first step, it uses the environment to update the position of the

robot. We can use Odometry but it can be erroneous, we cannot only
rely directly on odometry.

 We can use laser scans of the environment to correct the position of the
robot. But, it won’t work in some environments like underwater.

 Thus, the position of the robot can be better identified by extracting
features from the environment.

Data Association

Data association or data matching is that of matching observed landmarks from different
(laser) scans with each other. There are some challenges associated with the Data
Association,

 The algorithm might not re-observe landmarks in every frame.
 The algorithm wrongly associates a landmark to a previously observed landmark.
There are few approaches to perform data association, we will be discussing the nearest
neighbor algorithm first:

 First, when you get the data from the laser scan use landmark extraction to extract all
visible landmarks.

 After that, we associate all the extracted landmarks to the closest landmark that can be
observed >N times.

 Now, we input the list of extracted landmarks and list of previously detected landmarks
that are in the database, if the landmark is already in the database then, we increase the
their count by N, and if they are not present then set their count to 1.

After the above step, we need to perform the following update steps:

 State Estimation: In this step, we use the odometer data to get the current state
estimate.

 State update: In this stage, we update our new estimated state by re-observing
landmarks.

 Landmarks update: In this step, we add new landmarks that are detected in current
stage.

Applications of SLAM

 SLAM problem is fundamental for getting robots autonomous. It has wide variety of

application where we want to represent surroundings with a map such as Indoor,
Underwater, Outer space etc.

Configuration Space

The configuration space is a transformation from the physical space in which the robot
is of finite-size into another space in which the robot is treated as a point. In other words,
the configuration space is obtained by shrinking the robot to a point, while growing the
obstacles by the size of the robot.

A key concept for motion planning is a configuration: – a complete specification of the position
of every point in the system

• A simple example: a robot that translates but does not rotate in the plane: – what is a sufficient
representation of its configuration?

q1

qn

q=(q1,…,

qn)

q2

q3

• The space of all configurations is the configuration space or Cspace.

 A robot configuration is a specification of the positions of all robot points relative to a fixed
coordinate system

 Usually a configuration is expressed as a “vector” of parameters

workspace robroetference direction
y reference point

• 3-paraxmeter

 Space of all its possible configurations

 But the topology of this space is usually not that of a Cartesian space

robot

y
x

3-D cylin



qy
S

1

q’
Rx

2
S

1

q2

q1

(S1)7xI3(I: Interval of reals)

Structure of Configuration Space

 It is a manifold, i.e., for each point q, there is a 1-to-1 map between a neighborhood of q and
a Cartesian space Rn, where n is the dimensionality of C

 This map is a local coordinate system called a chart.

 C can always be covered by a finite number of charts. Such a set is called an atlas

Metric in Configuration Space

A metric or distance function d in C is a map
d:(q1,q2)  C2  d(q1,q2) > 0

such that:

– d(q1,q2) = 0 if and only if q1 = q2

– d(q1,q2) = d (q2,q1)

– d(q1,q2) < d(q1,q3) + d(q3,q2)

Example:

C = S1xS1

• Robot A and point x of A

• x(q): location of x in the workspace when A is at configuration q

• A distance d in C is defined by:
d(q,q’) = maxxA ||x(q)-x(q’)||

where ||a - b|| denotes the Euclidean distance between points a and b in the workspace

Notion of a Path

q0 q1

qn
q2

q4 q(3s)

 A path in C is a piece of continuous curve connecting two configurations q and q’:

t : s  [0,1]  t (s)  C

 s’  s  d(t(s),t(s’))  0

Cell decomposition methods

The first approach to path planning uses cell decomposition—that is, it decomposes the free space
into a finite number of contiguous regions, called cells. These regions have the important property
that the path-planning problem within a single region can be solved by simple means (e.g., moving
along a straight line).

Cell decomposition methods can be improved in a number of ways, to alleviate some of these
problems. The first approach allows further subdivision of the mixed cells—perhaps using cells of half
the original size. This can be continued recursively until a path is found that lies entirely within free
cells. (Of course, the method only works if there is a way to decide if a given cell is a mixed cell, which
is easy only if the configuration space boundaries have relatively simple mathematical descriptions.)
This method is complete provided there is a bound on the smallest passageway through which a
solution must pass. Although it focuses most of the computational effort on the tricky areas within
the configuration space, it still fails to scale well to high-dimensional problems because each recursive
splitting of a cell creates 2d smaller cells. A second way to obtain a complete algorithm is to insist on
an exact cell decomposition of the free space.

Modified cost functions

Anyone who has driven a car knows that a parking space with one millimeter of clearance on either
side is not really a parking space at all; for the same reason, we would prefer solution paths that are
robust with respect to small motion errors. This problem can be solved by introducing a potential field.
A potential field is a function defined over state space, whose value grows with the distance to the
closest obstacle.

The potential field can be used as an additional cost term in the shortest-path calculation. This induces
an interesting tradeoff. On the one hand, the robot seeks to minimize path length to the goal. On the
other hand, it tries to stay away from obstacles by virtue of minimizing the potential function.

Skeletonization methods

The second major family of path-planning algorithms is based on the idea of skeletonization. These
algorithms reduce the robot’s free space to a one-dimensional representation, for which the planning
problem is easier. This lower-dimensional representation is called a skeleton of the configuration
space.

planning uncertain movements

The basic motion planning problem is a relaxed version of the motion planning problem. The robot is
a single, rigid body that can move freely and has no dynamics. It acts in a static, known environment.
Due to these assumptions the problem is simplified, limiting the practical implementations of the
solutions to the problem. Therefore, to meet with the conditions of the actual problem three
extensions of the basic motion planning problem are regarded:

 planning in a dynamic environment
 planning with uncertainty
 planning with constraints

The way to deal with extensions that encompass the actual problem is called a planning approach. A
planning approach views the motion planner as a whole. So at this point the representation method
and the search algorithm come together.

Planning in a Dynamic Environment

In the basic motion planning problem the environment is considered to be completely static as the
robot A is the only moving object in the environment. The environment can also be dynamic, when it
contains moving objects. Another type of environment occurs when not only the motion of the robot
A, but of multiple robots Ai is to be planned (Erdmann and Lozano-Pérez, 1986; Latombe, 1990). This
case differs from an environment with moving objects, as now the motion of more than one robots is
under control.

Finally, a special case arises when manipulation (Choset, 2005; Li et al., 1989) is considered. In this
case, the ability to alter the environment during movement, by moving objects itself, must be taken
into account by the motion planner. Planning for manipulation is such a broad topic in itself that it is
also been addressed with techniques that are outside the scope of motion planning. This study will
therefore not go into depth on this subject.

Planning with Uncertainty

The basic motion planning problem is based on assumptions about the robot and obstacles in the
workspace. It assumes exact knowledge of the workspace and the obstacles’ location and geometry.
Furthermore, it is assumed that the planned path is executed exactly. Such assumptions are generally

not realistic and therefore uncertainty must be considered in: a priori knowledge on the workspace;
in sensor information that is acquired during the execution of planning; and in the execution of the
plan itself.

 Robust methods

Uncertainty can also be handled using so-called robust control methods (see page 836) rather than
probabilistic methods. A robust method is one that assumes a bounded amount of uncertainty in each
aspect of a problem, but does not assign probabilities to values within the allowed interval. A robust
solution is one that works no matter what actual values occur, provided they are within the assumed
interval.

A fine-motion plan consists of a series of guarded motions. Each guarded motion consists of (1) a
motion command and (2) a termination condition, which is a predicate on the robot’s sensor values,
and returns true to indicate the end of the guarded move. The motion commands are typically
compliant motions that allow the effector to slide if the motion command would cause collision with
an obstacle.

Dynamics and control

the notion of dynamic state, which extends the kinematic state of a robot by its velocity. For example,
in addition to the angle of a robot joint, the dynamic state also captures the rate of change of the
angle, and possibly even its momentary acceleration. The transition model for a dynamic state
representation includes the effect of forces on this rate of change. Such models are typically expressed
via differential equations, which are equations that relate a quantity (e.g., a kinematic state) to the
change of the quantity over time (e.g., velocity). In principle, we could have chosen to plan robot
motion using dynamic models, instead of our kinematic models. Such a methodology would lead to
superior robot performance, if we could generate the plans. However, the dynamic state has higher
dimension than the kinematic space, and the curse of dimensionality would render many motion
planning algorithms inapplicable for all but the most simple robots. For this reason, practical robot
system often rely on simpler kinematic path planners

A common technique to compensate for the limitations of kinematic plans is to use a separate
mechanism, a controller, for keeping the robot on track. Controllers are techniques for generating
robot controls in real time using feedback from the environment, so as to achieve a control objective.
If the objective is to keep the robot on a preplanned path, it is often referred to as a reference
controller and the path is called a reference path. Controllers that optimize a global cost function are
known as optimal controllers. Optimal policies for continuous MDPs are, in effect, optimal controllers.
Controllers that provide force in negative proportion to the observed error are known as P controllers.
The letter ‘P’ stands for proportional, indicating that the actual control is proportional to the error of
the robot manipulator. More formally, let y(t) be the reference path, parameterized by time index t.
The control at generated by a P controller has the form:

at = KP (y(t) − xt) .

Here xt is the state of the robot at time t and KP is a constant known as the gain parameter of the
controller and its value is called the gain factor); Kp regulates how strongly the controller corrects for
deviations between the actual state xt and the desired one y(t). In our example, KP = 1. At first glance,
one might think that choosing a smaller value for KP would remedy the problem.

Our P controller appears to be stable but not strictly stable, since it fails to stay anywhere near its
reference trajectory. The simplest controller that achieves strict stability in our domain is a PD
controller. The letter ‘P’ stands again for proportional, and ‘D’ stands for derivative. PD controllers are
described by the following equation:

at = KP (y(t) − xt) + KD ∂(y(t) − xt) ∂t .

As this equation suggests, PD controllers extend P controllers by a differential component, which adds
to the value of at a term that is proportional to the first derivative of the error y(t) − xt over time. What
is the effect of such a term? In general, a derivative term dampens the system that is being controlled.
To see this, consider a situation where the error (y(t)−xt) is changing rapidly over Ɵme, as is the case
for our P controller above. The derivative of this error will then counteract the proportional term,
which will reduce the overall response to the perturbation. However, if the same error persists and
does not change, the derivative will vanish and the proportional term dominates the choice of control.
